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FOREWORD

This is the 1996 (QA96) version of Guidance for Data Quality Assessment, EPA QA/G-9. The
Environmental Protection Agency (EPA) has developed the Data Quality Assessment (DQA) Process as an
important tool for project managers and planners to determine whether the type, quantity, and quality of data
needed to support Agency decisions has been achieved. This guidance is the culmination of experiences in
the design and statistical analyses of environmental data in different Program Offices at the EPA. Many
elements of prior guidance, statistics, and scientific planning have been incorporated into this document.

This document provides general guidance to organizations on assessing data quality criteria and
performance specifications for decision making. This guidance assumes that an appropriate Quality System
has been established and that planning for data collection has been achieved using a scientifically-based
information collection strategy. An overview of the Agency's recommended data collection procedure, the
DQO Process, is included in this guidance in Chapter 1 and EPA QA/G-4.

Guidance for Data Quality Assessment is distinctly different from other guidance documents; it is
not intended to be read in a linear or continuous fashion. The intent of the document is for it to be used as a
"tool-box" of useful techniques in assessing the quality of data. The overall structure of the document will

enable the analyst to investigate many different problems using a systematic methodology. The methodology
consists of five steps that should be iterated between them as necessary:

(i) Review the Data Quality Objectives
(ii) Conduct a Preliminary Data Review
(iii) Select the Statistical Test

@iv) Verify the Assumptions of the Test
W) Draw Conclusions From the Data

This approach closely parallels the activities of a statistician analyzing a data set for the first time.
The five step procedure is not intended to be a definitive analysis of a project or problem, but provide an -
initial assessment on the "reasonableness" of the data that have been generated. Sophisticated statistical
analysis is often not necessary unless special or unusual circumstances have been encountered in the
generation or collection of the data or the analysis is planned in detail before the data are collected. This
guidance is directed towards the analysis of relatively small data sets containing data that have been collected

in a relatively simple fashion. The analysis of survey data containing large data sets or a complex sampling
scheme is best left for statistical experts.

e

This document is a product of the collaborative effort of many quality management professionals
throughout the EPA and the environmental community. It has been peer reviewed by the EPA Program
Offices, Regional Offices, and Laboratories. Many valuable comments and suggestions have been
incorporated to make it more useful, and additional suggestions to improve its effectiveness are sought. The
Quality Assurance Division has the Agency lead for the development of statistical quality assurance
techniques and future editions of this guidance will contain some of these recent developments.

This document is one of a series of quality management guidance documents that the EPA Quality
Assurance Division (QAD) has prepared to assist users in implementing the Agency-wide Quality System.
Other related documents currently available or planned include:
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EPA QA/G-4  Guidance for The Data Quality Objectives Process

EPA QA/G—4D DEFT Software for the Data Quality Objectives Process

EPA QA-G-4R Guidance for the Data Quality Objectives Process for Researchers (planned)
EPA QA/G-4S  Guidance for the Data Quality Ob.jectives Proce.ss (Superfund)

EPA QA/G-5  Guidance for Quality Assurance Project Plans (draft)

EPA QA/G-5S  Guidance on Sampling Plans (planned)

EPA QA/G-6  Guidance for the Preparation of Standard Operating Procedures (SOPs) for
Quality-Related Documents

EPA QA/G-9D Data Quality Evaluation Statistical Tools (DataQUEST)

The External Comment Draft EPA QA/G-5, the Final Version of EPA QA/G-4S, and the External
Comment Draft EPA of QA/G-4R and QA/G-5S should be available before December 1996.

This document is intended to be a "living document" that will be updated annually to incorporate new
topics and revisions or refinements to existing procedures. Comments received on this 1996 version will be
considered for inclusion in subsequent versions. In addition, user-friendly PC-based software (EPA QA/G-
9D) to supplement this guidance is being developed and should be available from QAD in September 1996.

Please send your written comments on Guidance for Data Quality Assessment to:

Quality Assurance Division (8724)
Office of Research and Development
U.S. Environmental Protection Agency
401 M Street, SW
Washington, DC 20460
(202) 260-5763
FAX (202) 401-7002

 E-mail: ord-qad@epamail.epa.gov
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INTRODUCTION

0.1 PURPOSE AND OVERVIEW

Data Quality Assessment (DQA) is the scientific and statistical evaluation of data to determine if
data obtained from environmental data operations are of the right type, quality, and quantity to support their
intended use. This guidance demonstrates how to use DQA in evaluating environmental data sets and
illustrates how to apply some graphical and statistical tools for performing DQA. The guidance focuses
primarily on using DQA in environmental decision making; however, the tools presented for preliminary data
review and verifying statistical assumptions are useful whenever environmental data are used, regardless of
whether the data are used for decision making.

DQA is built on a fundamental premise: data quality, as a concept, is meaningful only when it
.relates to the intended use of the data. . Data quality does not exist in a vacuum; one must know in what
context a data set is to be used in order to establish a relevant yardstick for judging whether or not the data set
is adequate. By using the DQA Process, one can answer two fundamental questions:

1. Can the decision (or estimate) be made with the desired confidence, given the quality of the data set?

2. How well can the sampling design be expected to perform over a wide range of possible outcomes?
If the same sampling design strategy is used again for a similar study, would the data be expected to
support the same intended use with the desired level of confidence, particularly if the measurement
results turned out to be higher or lower than those observed in the current study?

The first question addresses the data user's immediate needs. For example, if the data provide
evidence strongly in favor of one course of action over another, then the decision maker can proceed knowing
that the decision will be supported by unambiguous data. If, however, the data do not show sufficiently
strong evidence to favor one alternative, then the data analysis alerts the decision maker to this uncertainty.
The decision maker now is in a position to make an informed choice about how to proceed (such as collect
more or different data before making the decision, or proceed with the decision despite the relatively high, but
acceptable, probability of drawing an erroneous conclusion).

The second question addresses the data user's potential future needs. For example, if investigators
decide to use a certain sampling design at a different location from where the design was first used, they
should determine how well the design can be expected to perform given that the outcomes and environmental
conditions of this sampling event will be different from those of the original event. Because environmental
conditions will vary from one location or time to another, the adequacy of the sampling design approach

_should be evaluated over a broad range of possible outcomes and conditions.

0.2 DQA AND THE DATA LIFE CYCLE

The data life cycle (depicted in Figure 0.2-1) comprises three steps: planning, implementation, and
assessment. During the planning phase, the Data Quality Objectives (DQO) Process (or some other
systematic planning procedure) is used to define quantitative and qualitative criteria for determining when,
where, and how many samples (measurements) to collect and a desired level of confidence. This information,
along with the sampling methods, analytical procedures, and appropriate quality assurance (QA) and quality
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3. . Select the Statistical Test: Select the most appropriate procedure for summarizing and analyzing
the data, based on the review of the DQOs, the sampling design, and the preliminary data review.
Identify the key underlying assumptions that must hold for the statistical procedures to be valid.

4. Verify the Assumptions of the Statistical Test: Evaluate whether the underlying assumptions hold,
or whether departures are acceptable, given the actual data and other information about the study.

S. Draw Conclusions from the Data: Perform the calculations required for the statistical test and
document the inferences drawn as a result of these calculations. If the design is to be used again,
evaluate the performance of the sampling design.

These five steps are presented in a linear sequence, but the DQA process is by its very nature iterative. For
example, if the preliminary data review reveals patterns or anomalies in the data set that are inconsistent with
the DQOs, then some aspects of the study planning may have to be reconsidered in Step 1. Likewise, if the
underlying assumptions of the statistical test are not supported by the data, then previous steps of the DQA
process may have to be revisited. The strength of the DQA process is that it is designed to promote an
understanding of how well the data satisfy their intended use by progressing in a logical and efficient manner.

Nevertheless, it should be emphasized that the DQA process cannot absolutely prove that one has or
has not achieved the DQOs set forth during the planning phase of a study. This situation occurs because a
decision maker can never know the. true value of the item of interest. Data collection only provides the
investigators with an estimate of this, not its true value. Further, because analytical methods are not perfect,
they too can only provide an estimate of the true value of an environmental sample. Because investigators
make a decision based on estimated and not true values, they run the risk of making a wrong decision
(decision error) about the item of interest.

0.4 INTENDED AUDIENCE

This guidance is written for a broad audience of potential data users, data analysts, and data
generators. Data users (such as project managers, risk assessors, or principal investigators who are
responsible for making decisions or producing estimates regarding environmental characteristics based on
environmental data) should find this guidance useful for understanding and directing the technical work of
others who produce and analyze data. Data analysts (such as quality assurance specialists, or any technical
professional who is responsible for evaluating the quality of environmental data) should find this guidance to
be a convenient compendium of basic assessment tools. Data generators (such as analytical chemists, field
sampling specialists, or technical support staff responsible for collecting and analyzing environmental
samples and reporting the resulting data values) should find this guidance useful for understanding how their
work will be used and for providing a foundation for improving the efficiency and effectiveness of the data
generation process.

0.5 ORGANIZATION
This guidance presents background information and statistical tools for performing DQA. Each

chapter corresponds to a step in the DQA Process and begins with an overview of the activities to be
performed for that step. Following the overviews in Chapters 1, 2, 3, and 4, specific graphical or statistical

. tools are described and step-by-step procedures are provided along with examples.
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0.6 SUPPLEMENTAL SOURCES

Many of the graphical and statistical tools presented in this guidance are also implemented in a user-
friendly, personal computer software program called DataQUEST (Data Quality Evaluation Statistical Tools,
EPA QA/G-9D). DataQUEST simplifies the implementation of DQA by automating many of the
recommended statistical tools. DataQUEST runs on most IBM-compatible personal computers using the
DOS operating system; see the DataQUEST User’s Guide for complete information on the minimum
computer requirements.

The main references in this document are important works having application to environmental
sampling and interpretation of data; most of these references are widely available within the scientific and
environmental communities. The remaining references are either more detailed original academic aticles or
are not as readily available to analysts. Two excellent Agency references for analyzing environmental data
are Guidance on the Statistical Analysis of Ground-Water Monitoring Data (EPA 1992a), a useful
compendium of statistical methods and procedures (many of which are incorporated in this document) for the
analysis of data generated by EPA’s Office of Solid Waste; and Scout: A Data Analysis Program (EPA
1993b), a software program for analyzing multivariate data that includes methods for identifying multivariate
outliers, graphing the raw data, and displaying the results of principal component analysis.

0.7 SCOPE AND LIMITATIONS

This guidance is intended to be a convenient compendium of practical methods for the environmental
scientist and manager. It focuses on measurement data obtained through sampling and analysis of
contaminants in environmental media. Statistical nomenclature has been kept to the minimum and there are
some areas that will require the input of an environmental statistician for complete analysis. The intent of the
document is to assist the non-statistician in the review and analysis of environmental data.

This document represents the first edition of the DQA guidance, which will be followed by annual
updates. Readers are encouraged to send their suggestions for improvements and additions to the U.S. EPA
Quality Assurance Division. (The address is given in the Foreword.) The annual updates will refine existing
sections, present new tools and procedures, and expand the scope of application to additional types of
environmental problems.

This first edition is intended to cover most of the core topics of DQA for regulatory compliance
decisions that involve spatially distributed contamination. Most of the tools will also be applicable to
sampling data from hazardous waste sites or facilities under Superfund or RCRA. Many of the tools are
generally applicable and useful for other types of problems as well. Future editions of this guidance will
address more thoroughly the problems and issues associated with analyzing sampling data from more
dynamic processes, such as effluent discharged to waterways and emissions dispersed in ambient air. Future
editions will also address other topics, such as analyzing results from designed experiments and other
research studies, as well as environmental enforcement investigations.

This guidance is explicitly not intended to cover certain topics that are important in some areas of
environmental protection. For example, it does not address the important area of survey sampling involving
the administration of interviews or questionnaires to people. This document is not intended to substitute for
more thorough treatments of fundamental statistical concepts (as found in standard textbooks), nor is it
intended to provide a forum for publishing original research (as found in scholarly journals).
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CHAPTER 1

STEP 1: REVIEW DQOs AND THE SAMPLING DESIGN

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design
‘ REVIEW DQOs AND SAMPLING DESIGN

Purpose
Conduct Preliminary Data Review
T Review the DQO outputs, the sampling design, and

any data collection documentation for consistency. If
DQOs have not been developed, define the statistical

Select the Statistical Test hypothesis and specify tolerable limits on decision errors,
l : Activities
Verify the Assumptions « Review Study Objectives
‘ » Translate Objectives into Statistical Hypothesis
+ Develop Limits on Decision Errors
Draw Conclusions From the Data - Review Sampling Design
Tools

- Statements of hypotheses
« Sampling design concepts

Step 1: Review DQOs and Sampling Design

Review the objectives of the study.
= I DQOs have not been developed, review section 1.1.1 and define these objectives.
s |f DQOs were developed, review the outputs from the DQO Process.

Translate the data user's objectives into a statement of the primary statistical hypothesis.

s If DQOs have not been developed, review sections 1.1.2 and 1.2, and Table 1.2-1,
then develop a statement of the hypothesis based on the data user's objectives.

If DQOs were developed, translate them into a statement of the primary hypothesis.

Translate the data user's objectives into limits on Type 1 or Type Il decision errors.

= If DQOs have not been developed, review section 1.1.3 and document the data
user’s tolerable limits on decision errors.

= [f DQOs were developed, confirm the limits on decision errors.

Review the sampling design and note any special features or potential problems.
= Review the sampling design for any deviations (sections 1.1.4 and 1.3).
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CHAPTER 1
STEP 1: REVIEW DQOs AND THE SAMPLING DESIGN

1.1 OVERVIEW AND ACTIVITIES

The DQA Process begins by reviewing the key outputs from the planning phase of the data life cycle:
the Data Quality Objectives (DQOs), the Quality Assurance Project Plan (QAPP), and any associated
documents. The DQOs provide the context for understanding the purpose of the data collection effort and
establish the qualitative and quantitative criteria for assessing the quality of the data set for the intended use.
The sampling design (documented in the QAPP) provides important information about how to interpret the
data. By studying the sampling design, the analyst can gain an understanding of the assumptions under which
the design was developed, as well as the relationship between these assumptions and the DQOs. By
reviewing the methods by which the samples were collected, measured, and reported, the analyst prepares for
the preliminary data review and subsequent steps of the DQA Process.

Careful planning improves the representativeness and overall quality of a sampling design, the
effectiveness and efficiency with which the sampling and analysis plan is implemented, and the usefulness of
subsequent DQA efforts. Given the benefits of planning, the Agency has developed the DQO Process which
is a logical, systematic planning procedure based on the scientific method. The DQO Process emphasizes the
planning and development of a sampling design to collect the right type, quality, and quantity of data needed

_to support the decision. Using both the DQO Process and the DQA Process will help to ensure that the

decisions are supported by data of adequate quality; the DQO Process does so  prospectively and the DQA
Process does so retrospectively.

When DQOs have not been developed during the planning phase of the study, it is necessary to
develop statements of the data user's objectives prior to conducting DQA. The primary purpose of stating the
data user's objectives prior to analyzing the data is to establish appropriate criteria for evaluating the quality
of the data with respect to their intended use. Analysts who are not familiar with the DQO Process should
refer to the Guidance for the Data Quality Objectives Process, EPA QA/G-4 (1994), a book on statistical
decision making using tests of hypothesis, or consult a statistician.

The remainder of this chapter addresses recommended activities for performing this step of DQA and
technical considerations that support these activities. The remainder of this section describes the
recommended activities, the first three of which will differ depending on whether DQOs have already been
developed for the study. Section 1.2 describes how to select the null and alternative hypothe51s and section
1.3 presents a brief overview of different types of sampling designs.

1.1.1 Review Study Objectives

In this activity, the objectives of the study are reviewed to provide context for analyzing the data. Ifa

. planning process has been implemented before the data are collected, then this step reduces to reviewing the

documentation on the study objectives. If no planning process was used, the data user should:
= Develop a concise definition of the problem (DQO Process Step 1) and the decision (DQO Process Step

2) for which the data were collected. This should provide the fundamental reason for collecting the
environmental data and identify all potential actions that could result from the data analysis.

EPA QA/G-9 : 1.1-1 QA96




\h

®  Identify if any essential information is missing (DQO Process Step 3). If so, either collect the missing
information before proceeding, or select a different approach to resolving the decision.

®  Specify the scale of decision making (any subpopulations of interest) and any boundaries on the study
(DQO Process Step 4) based on the sampling design. The scale of decision making is the smallest area
or time period to which the decision will apply. The sampling design and implementation may restrict
how small or how large this scale of decision making can be.

1.1.2  Translate Objectives into Statistical Hypotheses

In this activity, the data user's objectives are used to develop a precise statement of the primary
hypotheses to be tested using environmental data. A statement of the primary statistical hypotheses includes
a null hy pothesis, which is a “baseline condition” that is presumed to be true in the absence of strong
evidence to the contrary, and an altemative hypothesis, which bears the burden of proof. In other words, the
baseline condition will be retained unless the alternative condition (the alternative hy pothesis) is thought to be
true due to the preponderance of evidence. In general, such hypotheses consist of the following elements:

= apopulation parameter of interest, which describes the feature of the environment that the data user is
investigating;

= anumerical value to which the parameter will be compared, such as a regulatory or risk-based threshold
" ora similar parameter from another place (e.g., comparison to a reference site) or time (e.g., comparison
to a prior time); and '

= the relation (such as “is equal to” or “is greater than”) that specifies precisely how the parameter will be
compared to the numerical value.

If DQOs were developed, the statement of hypotheses already should be documented in the outputs of Step 6
of the DQO Process. If DQOs have not been developed, then the analyst should consult with the data user to
develop hypotheses that address the data user's concerns. Section 1.2 describes in detail how to develop the

statement of hy potheses and includes a list of common encountered hypotheses for environmental decisions. .

1.1.3  Develop Limits on Decision Errors

The goal of this activity is to develop numerical probability limits that express the data user's
tolerance for committing false positive (Type I) or false negative (Type II) decision errors as a result of
uncertainty in the data. A false positive error occurs when the null hypothesis is rejected when it is true. A
false negative decision error occurs when the null hypothesis is not rejected when it is false. If tolerable
decision error rates were not established prior to data collection, then the data user should:

m  Specify the gray region where the consequences of a false negative decision error are relatively minor
(DQO Process Step 6). The gray region is bounded on one side by the threshold value and on the other

! Throughout this document, the term “primary hypotheses™ refers to the statistical hypotheses that correspond to the data user's
decision. Other statistical hypotheses can be formulated to formally test thazssumptions that underlie the specific calculations used to
test the primary hypotheses. See Chapter 3 for examples of assumptions underlying primary hypotheses and Chapter 4 for examples
of how to test these underlying assumptions.
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side by that parameter value where the consequences of making a false negative decision error begin to be
significant. Establish this boundary by evaluating the consequences of not rejecting the null hy pothesis

when it is false and then place the edge of the gray region where these consequences are severe enough to ;
set a limit on the magnitude of this false negative decision error. The gray region is the area between this ‘
parameter value and the threshold value. l

The width of the gray region represents one important aspect of the decision maker's concern for decision
errors. A more narrow gray region implies a desire to detect conclusively the condition when the true
parameter value is close to the threshold value (“close” relative to the variability in the data). When the
true value of the parameter falls within the gray region, the decision maker may face a high probability of
making a false negative decision error, because the data may not provide conclusive evidence for rejecting
the null hypothesis, even though it is false (i.e., the data may be too variable to allow the decision maker
to recognize that the baseline condition is, in fact, not true). ‘

= Specify tolerable limits on the probability of committing false positive and false negative decision errors
(DQO Process Step 6) that reflect the decision maker's tolerable limits for making an incorrect decision.
Select a possible value of the parameter; then, choose a probability limit based on an evaluation of the
seriousness of the potential consequences of making the decision error if the true parameter value is
located at that point. At a minimum, the decision maker should specify a false positive decision error
limit at the threshold value ( @), and a false negative decision error limit at the other edge of the gray

region (f3).

An example of the gray region and limits on the probability of committing both false positive and false
negative decision errors are contained in Box 1.1-1.

If DQOs were developed for the study, the tolerable limits on decision errors will already have been
developed. These values can be transferred directly as outputs for this activity. In this case, the action level
is the threshold value; the false positive error rate at the action level is the Type I error rate or  o; and the false
negative error rate at the other bound of the gray region is the Type II error rate or f3.

1.1.4 Review Sampling Design

The goal of this activity is to familiarize the analyst with the main features of the sampling design
that was used to generate the environmental data. The overall type of sampling design and the manner in
which samples were collected or measurements were taken will place conditions and constraints on how the ‘
data must be used and interpreted. Section 1.3 provides additional information about several different types
of sampling designs that are commonly used in environmental studies.

Review the sampling design documentation with the data user's objectives in mind. Look for design
features that support or contradict those objectives. For example, if the data user is interested in making a
decision about the mean level of contamination in an effluent stream over time, then composite samples may
be an appropriate sampling approach. On the other hand, if the data user is looking for hot spots of
contamination at a hazardous waste site, compositing should only be used with caution, to avoid “averaging
away” hot spots. Also, look for potential problems in the implementation of the sampling design. For
example, verify that each point in space (or time) had an equal probability of being selected for a simple
random sampling design. Small deviations from a sampling plan may have minimal effect on the conclusions
drawn from the data set. Significant or substantial deviations should be flagged and their potential effect
carefully considered throughout the entire DQA.
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Box 1.1-1: Example Applying the DQO Process Retrospectively

~ A waste incineration company was concerned that waste fly ash could contain hazardous levels of cadmium
and should be disposed of in a RCRA landfill. As a result, eight composite samples each consisting of eight
grab samples were taken from each load of waste. The TCLP leachate from these samples were then
analyzed using a method specified in 40 CFR, Pt. 261, App. Il. DQOs were not developed for this problem;
therefore, study objectives (sections 1.1.1 through 1.1.3) should be developed before the data are analyzed.

111 Review Study Objectives

Develop a concise definition of the problem — The problem is defined above.

Identify if any essential information is missing — It does not appear than any essential information is missing.

Specify the scale of decision making — Each waste load is sarhpled separately and decisions need to be
made for each load. Therefore, the scale of decision making is an individual load.

11.2  Translate Objectives into Statistical Hypotheses

Since composite samples were taken, the parameter of interest is the mean cadmium concentration. The
RCRA regulatory standard for cadmium in TCLP leachate is 1.0 mg/L. Therefore, the two hypotheses are
“mean cadmium > 1.0 mg/L” and “mean cadmium < 1.0 mg/L." 1

There are two possible decision errors 1) to decide the waste is hazardous (“mean 1.0") when it truly is

not (“mean < 1.0"), and 2) to decide the waste is not hazardous (“mean < 1.0") when it truly is (*mean1.0").
The risk of deciding the fly ash is not hazardous when it truly is hazardous is more severe since potential
consequences of this decision error include risk to human health and the environment. Therefore, this error
will be labeled the false positive error and the other error will be the false negative error. As a result of this
decision, the null hypothesis will be that the waste is hazardous (‘mean cadmium 1.0 mg/L") and the
alternative hypothesis will be that the waste is not hazardous (‘mean cadmium < 1.0 mg/L"). (See section 1.2
for more information on developing the null and alternative hypotheses.)

7
%y v(n
1.1.3  Develop Limits on Decision Errors /é 4/2’”%‘

s Specify the gray region — The consequence of a false negative decision error near the action level is
unnecessary resource expenditure. The amount of data also influences the width of the gray region.
Therefore, for now, a gray region was set from .75 to 1.0 mg/L. This region could be revised depending on
the power of the hypothesis test.

Decision Performance Goal Diagram

= Specify tolerable limits on the 1
probability of committing a decision 09 F
error — Consequences of a false
positive error include risk to human
health and environment. Another
consequence for the landfill owners is
the risk of fines and imprisonment.
Therefore, the stringent limit of 0.05
was set on the probability of a false
positive decision error. Consequences
of a false negative error include
unnecessary expenditures so a limit of
0.20 was set on its probability. This
error rate could be revised based on 01 -
the power of the hypothesis test. : o

\ Tolerable
False .

. Positive

Decision

08 - Error Rates
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04 - Ne;a‘ﬁse
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The results of this planning process '
are summarized in the Decision (W Action Level
Performance Goal Diagram. True Mean Cadmium (mg/))
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1.2 DEVELOPING THE STATEMENT OF HYPOTHESES

The full statement of the statistical hypotheses has two major parts: the null hypothesis (H ) and the
alternative hypothesis (H ,). In both parts, a population parameter is compared to either a fixed value (for a
one-sample test) or another population parameter (for a two-sample test). The population parameter is a
quantitative characteristic of the population that the data user wants to estimate using the data. In other
words, the parameter describes that feature of the population that the data user will evaluate when making the
decision. Examples of parameters are the population mean and median.

If the data user is interested in drawing inferences about only one population, then the null and
alternative hypotheses will be stated in terms that relate the true value of the parameter to some fixed
threshold value. A common example of this one-sample problem in environmental studies is when pollutant
levels in an effluent stream are compared to a regulatory limit. If the data user is interested in comparing two
populations, then the null and alternative hypotheses will be stated in terms that compare the true value of one
population parameter to the corresponding true parameter value of the other population. A common example

-of this two-sample problem in environmental studies is when a potentially contaminated waste site is being

compared to a reference area using samples collected from the respective areas. In this situation, the
hypotheses often will be stated in terms of the difference between the two parameters. ‘

The decision on what should constitute the null hypothesis and what should be the alternative is
sometimes difficult to ascertain. In many cases, this problem does not arise because the nuill and alternative
hypotheses are determined by specific regulation. However, when the null hypothesis is not specified by
regulation, it is necessary to make this determination. The test of hypothesis procedure prescribes that the
null hypothesis is only rejected in favor of the alternative, provided there is overwhelming evidence from the
data that the null hypothesis is false. In other words, the null hypothesis is considered to be true unless the
data show conclusively that this is not so. Therefore, it is sometimes useful to choose the null and alternative
hypotheses in light of the consequences of possibly making an incorrect decision between the null and
alternative hypotheses. The true condition that occurs with the more severe decision error (not what would be
decided in error based on the data) should be defined as the null hypothesis. For example, consider the two
decision errors: “decide a company does not comply with environmental regulations when it truly does” and
“decide a company does comply with environmental regulations when it truly does not.” If the first decision
error is considered the more severe decision error, then the true condition of this error, “the company does
comply with the regulations™ should be defined as the null hypothesis. If the second decision error is
considered the more severe decision error, then the true condition of this error, “the company does not comply
with the regulations” should be defined as the null hypothesis.

An alternative method for defining the null hypothesis is based on historical information. If a large
amount of information exists suggesting that one hypothesis is extremely likely, then this hypothesis should
be defined as the alternative hypothesis. In this case, a large amount of data may not be necessary to provide
overwhelming evidence that the other (null) hypothesis is false. For example, if the waste from an incinerator
was previously hazardous and the waste process has not changed, it may be more cost-effective to define the
alternative hypothesis as “the waste is hazardous” and the null hypothesis as “the waste is not hazardous.”

Consider a data user who wants to know whether the true mean concentration (p) of atrazine in
ground water at a hazardous waste site is greater than a fixed threshold value C. If the data user presumes
from prior information that the true mean concentration is at least C due possibly to some contamination
incident, then the data must provide compelling evidence to reject that presumption, and the hypotheses can
be stated as follows:
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Narrative Statement of Hypotheses , <H Statement of Hypotheses Using Standard Notation

Null Hypothesis (Baseline Condition): | Hy: n 2 G
The true mean concentration of atrazine in ground
water is greater than or equal to the threshold Versus

value C; versus

Alternative Hypothesis: H,: u<C
The true mean concentration of atrazine in ground

water is less than the threshold value C. I "

On the other hand, if the data user presumes from prior information that the true mean concentration is less
than C due possibly to the fact that the ground water has not been contaminated in the past, then the data

must provide compelling evidence to reject that presumption, and the hypotheses can be stated as follows:

Narrative Statement of Hypotheses Statement of Hypotheses Using Standard Notation "

Null Hypothesis (Baseline Condition):

The true mean concentration of atrazine in ground
water is less than or equal to the threshold

value C; versus

Hy pu<C;

VErsus

Alternative Hy pothesis:
The true mean concentration of atrazine in ground
water is greater than the threshold value C.

H,: p>C

_ B

In stating the primary hypotheses, it is convenient to use standard statistical notation, as shown
throughout this document. However, the logic underlying the hypothesis always corresponds to the decision
of interest to the data user. :

Table 1.2-1 summarizes some common types of environmental decisions and the corresponding
hypotheses. In Table 1.2-1, the parameter is denoted using the symbol “ ©,” and the difference between two
parameters is denoted using “ ©, - ©,” where O, represents the parameter of the first population and ©,
represents the parameter of the second population. The use of “ ®@” is to avoid using the terms “population
mean” or “population median” repeatedly because the structure of the hypothesis test remains the same
regardless of the population parameter. The fixed threshold value is denoted “C,” and the difference between
two parameters is denoted “ 8,” (it is common to see the null hypothesis defined such that 8,=0). If the data
user's problem does not fall into one of the categories described in Table 1.2-1, the problem and associated
hypotheses may be of a more complicated form and a statistician should be consulted.

For the first of the six decision problems in Table 1.2-1, only estimates of @ that exceed C can cast
doubt on the null hypothesis. This is called a one-tailed hypothesis test, because only parameter estimates on
one side of the threshold value can lead to rejection of the null hypothesis. The second, fourth, and fifth rows
of Table 1.2-1 are also examples of one-tailed hypothesis tests. The third and sixth rows of Table 1.2-1 are
examples of two-tailed tests, because estimates falling both below and above the null-hy pothesis parameter
value can lead to rejection of the null hypothesis. Most hypotheses connected with environmental monitoring
are one-tailed because high pollutant levels can harm humans or ecosystems.
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Table 1.2-1. Commonly Used Statements of Statistical Hypotheses

Type of Decision

Null Hypothesis

Alternative
Hypothesis

Compare environmental conditions to a fixed
threshold value, such as a regulatory standard or
acceptable risk level; presume that the true
condition is less than the threshold value.

H,: ©8>C

Compare environmental conditions to a fixed
threshold value; presume that the true condition is
greater than the threshold value.

H,: ©<C

Compare environmental conditions to a fixed
threshold value; presume that the true condition is
equal to the threshold value and the data user is
concerned whenever conditions vary significantly
from this value.

Hy: ®=+C

Compare environmental conditions associated with
two different populations to a fixed threshold value
(8,) such as a regulatory standard or acceptable
risk level; presume that the true condition is less
than the threshold value. If it is presumed that
conditions associated with the two populations are
the same, the threshold value is 0.

HA: ®l ‘®2>60

(HA: ®l = ®2 > 0)

Compare environmental conditions associated with
two different populations to a fixed threshold value
(8,) such as a regulatory standard or acceptable
risk level; presume that the true condition is greater
than the threshold value. If it is presumed that
conditions associated with the two populations are
the same, the threshold value is 0.

HA: ®l '®2<60

(H,: ©,-0,<0)

Compare environmental conditions associated with
two different populations to a fixed threshold value
(8,) such as a regulatory standard or acceptable
risk level; presume that the true condition is equal
to the threshold value. If it is presumed that
conditions associated with the two populations are

Hy: @< C

H,: @:C

H,: ®=C
H,: ©,-0,< 4§,
(Ho: ®l_®2 S O)
Ho: ®|-@22 60
(Hy: ©,-0,20)
HO: @]‘®2=60
(Hy: ©,-0,=0)

HA: ®l '@2 # 60

(HA: ®| - ®2 # O)

the same, the threshold value is 0.
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1.3 DESIGNS FOR SAMPLING ENVIRONMENTAL MEDIA

Sampling designs provide the basis for how a set of samples may be analyzed. Different sampling
designs require different analysis techniques and different assessment procedures. There are two primary
types of sampling designs: authoritative (judgment) sampling and probability sampling. This section
describes some of the most common sampling designs.

1.3.1 Authoritative Sampling

With authoritative (judgment) sampling, an expert having knowledge of the site (or process)
designates where and when samples are to be taken. This type of sampling should only be considered when
the objectives of the investigation are not of a statistical nature, for example, when the objective ofa study is
to identify specific locations of leaks, or when the study is focused solely on the sampling locations
themselves. Generally, conclusions drawn from authoritative samples apply only to the individual samples
and aggregation may result in severe bias and lead to highly erroneous conclusions. Judgmental sampling
also precludes the use of the sample for any purpose other than the original one. Thus if the data may be used
in further studies (e.g., for an estimate of variability in a later study), a probabilistic design should be used.

When the study objectives involve estimation or decision making, some form of probability sampling
is required. As described below, this does not preclude use of the expert's knowledge of the site or process in
designing a probability-based sampling plan; however, valid statistical inferences require that the plan
incorporate some form of randomization in choosing the sampling locations or sampling times. For example,
to determine maximum SO, emission from a boiler, the sampling plan would reasonably focus, or put most of
the weight on, periods of maximum or near-maximum boiler operation. Similarly, if a residential lot is being
evaluated for contamination, then the sampling plan can take into consideration prior knowledge of
contaminated areas, by weighting such areas more heavily in the sample selection and data analysis.

1.3.2  Probability Sampling

Probability samples are samples in which every member of the target population (i.e., every potential
sampling unit) has a known probability of being included in the sample. Probability samples can be of
various types, but in some way, they all make use of randomization, which allows valid probability
statements to be made about the quality of estimates or hypothesis tests that are derived from the resultant
data.

One common misconception of probability sampling procedures is that these procedures preclude
the use of important prior information. Indeed, just the opposite is true. An efficient sampling design is one
that uses all available prior information to stratify the region and set appropriate probabilities of selection.
Another common misconception is that using a probability sampling design means allowing the possibility
that the sample points will not be distributed appropriately across the region. However, if there is no prior
information regarding the areas most likely to be contaminated, a grid sampling scheme (a type of stratified
design) is usually recommended to ensure that the sampling points are dispersed across the region.

1.3.2.1 Simple Random Sampling
The simplest type of probability sample is the simple random sample where every possible sampling
unit in the target population has an equal chance of being selected. Simple random samples, like the other

samples, can be either samples in time and/or space and are often appropriate at an early stage of an
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investigation in which little is known about systematic variation within the site or process. All of the
-sampling units should have equal volume or mass, and ideally be of the same shape if applicable. Witha
simple random sample, the term “random” should not be interpreted to mean haphazard; rather, it has the
explicit meaning of equiprobable selection. Simple random samples are generally developed through use of a
random number table or through computer generation of pseudo-random numbers.

1.3.2.2 Sequential Random Sampling

Usually, simple random samples have a fixed sample size, but some alternative approaches are
available, such as sequential random sampling, where the sample sizes are not fixed a priori. Rather, a
statistical test is performed after each specimen's analysis (or after some minimum number have been
analyzed). This strategy could be applicable when sampling and/or analysis is quite expensive, when
information concerning sampling and/or measurement variability is lacking, when the characteristics of
interest are stable over the time frame of the sampling effort, or when the objective of the sampling effort is
to test a single specific hypothesis.

1.3.2.3 Systematic Samples

In the case of spatial sampling, systematic sampling involves establishing a two-dimensional (or in
some cases a three-dimensional) spatial grid and selecting a random starting location within one of the cells.
Sampling points in the other cells are located in a deterministic way relative to that starting point. In addition,
the orientation of the grid is sometimes chosen randomly and various types of systematic samples are
possible. For example, points may be arranged in a pattern of squares (rectangular grid sampling) or a
pattern of equilateral triangles (triangular grid sampling). The result of either approach is a simple pattern of
. equally spaced points at which sampling is to be performed.

Systematic sampling designs have several advantages over random sampling and some of the other
types of probability sampling. They are generally easier to implement, for example. They are also preferred
when one of the objectives is to locate “hot spots” within a site or otherwise map the pattern of
concentrations over a site. On the other hand, they should be used with caution whenever there is a
possibility of some type of cyclical pattern in the waste site or process. Such a situation, combined with the.
uniform pattern of sampling points, could very readily lead to biased results.

1.3.2.4 Stratified Samples

Another type of probability sample is the stratified random sample, in which the site or process is
divided into two or more nonoverlapping strata, sampling units are defined for each stratum, and separate
simple random samples are employed to select the units in each stratum. (If a systematic sample were
employed within each stratum, then the design would be referred to as a stratified systematic sample.) Strata
should be defined so that physical samples within a stratum are more similar to each other than to samples
from other strata. If so, a stratified random sample should result in more precise estimates of the overall
population parameter than those that would be obtained from a simple random sample with the same number
of sampling units.

Stratification is an accepted way to incorporate prior knowledge and professional judgment into a
probabilistic sampling design. Generally, units that are “alike” or anticipated to be “alike” are placed
together in the same stratum. Units that are contiguous in space (e.g., similar depths) or time are often
grouped together into the same stratum, but characteristics other than spatial or temporal proximity can also
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be employed. Media, terrain characteristics, concentration levels, previous cleanup attempts, and
confounding contaminants can also be used as the basis for creating strata.

Advantages of stratified samples over random samples include their ability to ensure more uniform
coverage of the entire target population and, as noted above, their potential for achieving greater precision in
certain estimation problems. Even when imperfect information is used to form strata, the stratified random
sample will generally be more cost-effective than a simple random sample. A stratified design can also be
useful when there is interest in estimating or testing characteristics for subsets of the target population.
Because different sampling rates can be used in different strata, one can oversample in strata containing those
subareas of particular interest to ensure that they are represented in the sample. In general, statistical
calculations for data generated via stratified samples are more complex than for random samples, and certain
types of tests, for example, cannot be performed when stratified samples are employed. Therefore a
statistician should be consulted when stratified sampling is used.

1.3.2.5 Compositing Physical Samples

When analysis costs are large relative to sampling costs, cost-effective plans can sometimes be
achieved by compositing physical samples or specimens prior to analysis, assuming that there are no safety
hazards or potential biases (for example, the loss of volatile organic compounds from a matrix) associated
with such compositing. For the same total cost, compositing in this situation would allow a larger number of
sampling units to be selected than would be the case if compositing were not used. Composite samples
reflect a physical rather than a mathematical mechanism for averaging. Therefore, compositing should
generally be avoided if population parameters other than a mean are of interest (e.g., percentiles or standard
deviations).

Composite sampling is also useful when the analyses of composited samples are to be used in a
two-staged approach in which the composite-sample analyses are used solely as a screening mechanism to
identify if additional, separate analyses need to be performed. This situation might occur during an early
stage of a study that seeks to locate those areas that deserve increased attention due to potentially high levels
of one or more contaminants.

1.3.2.6 Other Sampling Designs

Adaptive sampling involves taking a sample and using the resulting information to design the next
stage of sampling. The process may continue through several additional rounds of sampling and analysis. A
common application of adaptive sampling to environmental problems involves subdividing the region of
interest into smaller units, taking a probability sample of these units, then sampling all units that border on
any unit with a concentration level greater than some specified level C. This process is continued until all
newly sampled units are below C. The field of adaptive sampling is currently undergoing active development
and can be expected to have a significant impact on environmental sampling.

Ranked set sampling (RSS) uses the availability of an inexpensive surrogate measurement when it is
correlated with the more expensive measurement of interest. The method exploits this correlation to obtain a
sample which is more representative of the population that would be obtained by random sampling, thereby
leading to more precise estimates of population parameters than what would be obtained by random
sampling. RSS consists of creating n groups, each of size n (for a total of n ? initial samples), then ranking the
surrogate from largest to smallest within each group. One sample from each group is then selected according
to a specified procedure and these n samples are analyzed for the more expensive measurement of interest.
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CHAPTER 2

STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

‘ / CONDUCT PRELIMINARY DATA REVIEW

Purpose

Conduct Preliminary Data Review

Generate statistical quantities and graphical
representations that describe the data. Use this
information to learn about the structure of the data

Select the Statistical Test and identify any patterns or relationships.
1 iviti
Verify the Assumptions

« Review Quality Assurance Reports
‘ - Calculate Basic Statistical Quantities
« Graph the Data

Draw Conclusions From the Data

Tools

- Statistical quantities
« Graphical representations

Step 2: Conduct a Preliminary Data Review

e Review quality assurance reports.
= Look for problems or anomalies in the implementation of the sample collection and
analysis procedures.
s Examine QC data for information to verify assumptions underlying the Data Quality
Objectives, the Sampling and Analysis Plan, and the Quality Assurance Project Plans.

@ Calculate the statistical quantities.
= Consider calculating appropriate percentiles (section 2.2.1)
= Select measures of central tendency (section 2.2.2) and dispersion (section 2.2.3).
m [f the data involve two variables, calculate the correlation coefficient (section 2.2.4).

e Display the data using graphical representations.

m  Select graphical representations (section 2.4) that illuminate the structure of the data set
and highlight assumptions underlying the Data Quality Objectives, the Sampling and
Analysis Plan, and the Quality Assurance Project Plans.

=  Use a variety of graphical representations that examine different features of the set.
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STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

Statistical Quantities Section | Directions | Example |
[ Coefficient of Variation 223 Box 2.2-4 | Box2.2-5
" Correlation Coefﬁcier_lt 224 Box 2.2-6 Box 2.2-6
[[ 1nterquartile Range 223 | Box22-4 | Box22-5
Mean 222 Box 2.2-2 | Box 2.2-3
Median 222 Box 2.2-2 | Box 2.2-3
l[ Mode 222 | Box22-2 | Box22-3 s
Percentiles/Quantiles 2.2.1 Box 2.2-1 Box 2.2-1
Range 223 Box 2.2-4 | Box 2.2-5
“ Standard Deviation 223 Box2.2-4 | Box22-5
[LVariance 223 | Box2.2-4 | Box22-5 |
"ﬁﬁlical Representation_s-= Section Figure Directions mpT“
[[ Box and Whisker Plot 233 |Figure2.3-3 | Box2.3-5 Box 2.3-6
[[ Coded Scatter Piot. 2.3.73 | Figure 2.3-9
Il Contour Plots 2393
Autocorrelation Function 2382 |Figure23-13 [Box23-16 |Box2.3-17 ||
Empirical Quantile-Quantile Plot 23.74 | Box23-14 Box 2.3-14 | Box 2.3-14
Frequency Plots 231 Figure 2.3-1 | Box 2.3-1 Box 2.3-2
h-Scatterplot 2393
Histogram 23.1 Figure 2.3-2 | Box 2.3-1 Box 2.3-2
Normal Probability Plot 23.6 |Box23-12 Box 2.3-11 Box 2.3-12
Parallel Coordinate Plot 2.3.7.3 | Figure 2.3-10
Posting Plots 2.3.9.1 | Figure2.3-14 | Box2.3-18 | Box 2.3-18
“ Quantile Plot 235 Figure 2.3-5 | Box 2.3-9 Box 2.3-10
Ranked Data Plot 2.34 Figure 2.3-4 | Box 2.3-7 Box 2.3-8
Scatter Plot 2.3.72 | Figure2.3-8 | Box 2.3-13 Box 2.3-1?‘
Scatter Plot Matrix 2.3.7.3 | Figure 2.3-11
Stem-and-leaf Plot 232 Box 2.3-4 Box 2.3-3 Box 2.3-4
Symbol Plots 2.3.9.2 | Figure 2.3-15 | Box 2.3-18 Box 2.3-18
l Time Plot 2.3.8.1 Figure 2.3-12 | Box 2.3-15 Box 2.3-15<|
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A CHAPTER 2
STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

2.1 OVERVIEW AND ACTIVITIES

In this step of the DQA Process, the analyst conducts a preliminary evaluation of the data set,
calculates some basic statistical quantities, and examines the data using graphical representations. A
preliminary data review should be performed whenever data are used, regardless of whether they are used to
support a decision, estimate a population parameter, or answer exploratory research questions. By reviewing
the data both numerically and graphically, one can learn the “structure” of the data and thereby identify
appropriate approaches and limitations for using the data. The DQA software DataQUEST (G-9D, 1996)

will perform all of these functions as well as more sophisticated statistical tests.

There are two main elements of preliminary data review: (1) basic statistical quantities (summary
statistics); and (2) graphical representations of the data. Statistical quantities are functions of the data that
numerically describe the data set. Examples include a mean, median, percentile, range, and standard
deviation. They can be used to provide a mental picture of the data and are useful for making inferences
concerning the population from which the data were drawn. Graphical representations are used to identify
patterns and relationships within the data, confirm or disprove hypotheses, and identify potential problems.

.For example, a normal probability plot may allow an analyst to quickly discard an assumption of normality

and may identify potential outliers.

The preliminary data review step is designed to make the analyst familiar with the data. The review
should identify anomalies that could indicate unexpected events that may influence the analysis of the data.
The analyst may know what to look for based on the anticipated use of the data documented in the Data
Quality Objectives Process, the Quality Assurance Project Plan, and any associated documents. The results
of the review are then used to select a procedure for testing a statistical hypotheses to support the data user's
decision.

2.1.1 Review Quality Assurance Reports

The first activity in conducting a preliminary data review is to review any relevant quality assurance
(QA) reports that describe the data collection and reporting process as it actually was implemented. These
QA reports provide valuable information about potential problems or anomalies in the data set. Specific
items that may be helpful include:

® Data validation reports that document the sample collection, handling, analysis, data reduction, and
reporting procedures used,;

® Quality control reports from laboratories or field stations that document measurement system
performance, including data from check samples, split samples, spiked samples, or any other internal

QC measures; and

® Technical systems reviews, performance evaluation audits, and audits of data quality, including data
from performance evaluation samples.
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When reviewing QA reports, particular attention should be paid to information that can be used to
check assumptions made in the Data Quality Objectives Process. Of great importance are apparent anomalies
in recorded data, missing values, deviations from standard operating procedures, and the use of nonstandard
data collection methodologies.

2.1.2 Calculate Basic Statistical Quantities

The goal of this activity is to summarize some basic quantitative characteristics of the data set using
common statistical quantities. Some statistical quantities that are useful to the analyst include: number of
observations; measures of central tendency, such as a mean, median, or mode; measures of dispersion, such
as range, variance, standard deviation, coefficient of variation, or interquartile range; measures of relative
standing, such as percentiles; measures of distribution symmetry or shape; and measures of association
between two or more variables, such as correlation. These measures can then be used for description,
communication, and to test hy pothesis regarding the population from which the data were drawn. Section 2.2
provides detailed descriptions and examples of these statistical quantities.

The sample design may influence how the statistical quantities are computed. The formulas given in
this chapter are for simple random sampling, simple random sampling with composite samples, and
randomized systematic sampling. If a more complex design is used, such as a stratified design, then the
formulas may need to be adjusted..

2.1.3 Graph the Data’

The goal of this step is to identify patterns and trends in the data that might go unnoticed using
purely numerical methods. Graphs can be used to identify these patterns and trends, to quickly confirm or
disprove hypotheses, to discover new phenomena, to identify potential problems, and to suggest corrective
measures. In addition, some graphical representations can be used to record and store data compactly or to
convey information to others. Graphical representations include displays of individual data points, statistical
quantities, temporal data, spatial data, and two or more variables. Since no single graphical representation
will provide a complete picture of the data set, the analyst should choose different graphical techniques to
illuminate different features of the data. Section 2.3 provides descriptions and examples of common
graphical representations.

At a minimum, the analyst should choose a graphical representation of the individual data points and
a graphical representation of the statistical quantities. If the data set has a spatial or temporal component,
select graphical representations specific to temporal or spatial data in addition to those that do not. If the data
set consists of more than one variable, treat each variable individually before developing graphical
representations for the multiple variables. If the sampling plan or suggested analysis methods rely on any
critical assumptions, consider whether a particular type of graph might shed light on the validity of that
assumption. For example, if a small-sample study is strongly dependent on the assumption of normality, then
a normal probability plot would be useful (section 2.3.6).

The sampling design may influence what data may be included in each representation. Usually, the
graphical representations should be applied to each complete unit of randomization separately or each unit of
randomization should be represented with a different symbol. For example, the analyst could generate box
plots for each stratum instead of generating one box plot that includes the data from all the strata.
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22 STATISTICAL QUANTITIES
2.2.1 Measures of Relative Standing

Sometimes the analyst is interested in knowing the relative position of one of several observations in
relation to all of the observations. Percentiles are one such measure of relative standing that may also be
useful for summarizing data. A percentile is the data value that is greater than or equal to a given percentage
of the data values. Stated in mathematical terms, the p ™ percentile is the data value that is greater than or
equal to p% of the data values and is less than or equal to (1-p)% of the data values. Therefore, if 'x' is thep *
percentile, then p% of the values in the data set are less than or equal to x, and (100-p)% of the values are
greater than or equal to x. A sample percentile may fall between a pair of observations. For example, the
75" percentile of a data set of 10 observations is not uniquely defined. Therefore, there are several methods
for computing sample percentiles, the most common of which is described in Box 2.2-1.

Important percentiles usually reviewed are the quartiles of the data, the 25 ™, 50®, and 75"
percentiles. The 50" percentile is also called the sample median (section 2.2.2), and the 25 ™ and 75"
percentile are used to estimate the dispersion of a data set (section 2.2.3). Also important for environmental
data are the 90™, 95", and 99" percentile where a decision maker would like to be sure that 90%, 95%, or
99% of the contamination levels are below a fixed risk level. '

Box 2.2-1: Directions for Calculating the Measure of Relative Standing (Percentiles)
with an Example

Let X,, X,, ..., X, represent the n data points. To compute the g" percentile, y(p), first list the data from
smallest to largest and label these points X ), X3, . . ., X(n, (50 that X 4, is the smallest, X ,, is the second
smallest, and X ,,, is the largest). Lett = p/100, and multiply the sample size n by t. Divide the result into the
integer part and the fractiona! part, i.e., let nt = j + g where j is the integer part and g is the fraction part. Then
the p™ percentile, y(p), is calculated by:

Ifg=0, y(P) = (Xij) * X(je )12
otherwise, y(P) = X4y

Example: The 90" and 95" percentile will be computed for the following 10 data points (ordered from smallest
to largest) : 4,4,4,5,5,6,7,7, 8, and 10 ppb.

For the 95th percentile, t = p/100 = 95/100= .95 and nt = (10)(.95) = 9.5 =9 + .5. Therefore, j =9 and
g=.5. Because g =.5+# 0, y(95) = X(j.+ 1= X941 = X(10) = 10 ppm. Therefore, 10 ppm is the 95" percentile
of the above data.

For the 90" percentile, t = p/100 = 90/100 = .9 and nt = (10)(.9) = 9. Therefore j=9 and g =0. Since g =0,
y(90) = (X(9) + X(10)) /2= (8 + 10) / 2 =9 ppm.

A quantile is similar in concept to a percentile; however, a percentile represents a percentage whereas
a quantile represents a fraction. If 'x'is the p " percentile, then at least p% of the values in the data set lie at or
below x, and at least (100-p)% of the values lie at or above x, whereas if x is the p/100 quantile of the data,

~ then the fraction p/100 of the data values lie at or below x and the fraction (1-p)/100 of the data values lie at

or above x. For example, the .95 quantile has the property that .95 of the observations lie at or below x and
.05 of the data lie at or above x. For the example in Box 2.2-1, 9 ppm would be the .95 quantile and 10 ppm
would be the .99 quantile of the data.
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2.2.2 Measures of Central Tendency

Measures of central tendency characterize the center of a sample of data points. The three most
common estimates are the mean, median, and the mode. Directions for calculating these quantities are
contained in Box 2.2-2; examples are provided in Box 2.2-3.

The most commonly used measure of the center of a sample is the sample mean, denoted by X. This
estimate of the center of a sample can be thought of as the “center of gravity” of the sample. The sample
mean is an arithmetic average for simple sampling designs; however, for complex sampling designs, such as
stratification, the sample mean is a weighted arithmetic average. The sample mean is influenced by extreme
values (large or small) and nondetects (see section 4.7).

The sample median (X) is the second most popular measure of the center of the data. This value falls
directly in the middle of the data when the measurements are ranked in order from smallest to largest. This
means that % of the data are smaller than the sample median and Y% of the data are larger than the sample
median. The median is another name for the 50 ® percentile (section 2.2.1). The median is not influenced by
extreme values and can easily be used in the case of censored data (nondetects).

The third method of measuring the center of the data is the mode. The sample mode is the value of
the sample that occurs with the greatest frequency. Since this value may not always exist, or if it does it may
not be unique, this value is the least commonly used. However, the mode is useful for qualitative data.

2.2.3 Measures of Dispersion

Measures of central tendency are more meaningful if accompanied by information on how the data
spread out from the center. Measures of dispersion in a data set include the range, variance, sample standard
deviation, coefficient of variation, and the interquartile range. Directions for computing these measures are
given in Box 2.2-4; examples are given in Box 2.2-5.

The easiest measure of dispersion to compute is the sample range. For small samples, the range is
easy to interpret and may adequately represent the dispersion of the data. For large samples, the range is not
very informative because it only considers (and therefore is greatly influenced) by extreme values.

The sample variance measures the dispersion from the mean of a data set. A large sample variance
implies that there is a large spread among the data so that the data are not clustered around the mean. A small
sample variance implies that there is little spread among the data so that most of the data are near the mean.

The sample variance is affected by extreme values and by a large number of nondetects. The sample standard
deviation is the square root of the sample variance and has the same unit of measure as the data.

The coefficient of variation (CV) is a unitless measure that allows the comparison of dispersion
across several sets of data. The CV is often used in environmental applications because variability
(expressed as a standard deviation) is often proportional to the mean.

When extreme values are present, the interquartile range may be more representative of the

dispersion of the data than the standard deviation. This statistical quantity does not depend on extreme
values and is therefore useful when the data include a large number of nondetects.
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Box 2.2-2: Directions for Calculating the Measures of Central Tendency
Let X,, X,, ..., X, represent the n data points.

Sample Mean The sample meanX is the sum of all the data points divided by the total number of data points
(n):

¥-Lywx
n =

Sample Median The sample median O?) is the center of the data when the measurements are ranked in
order from smallest to largest. To compute the sample median, list the data from smallest to largest and label
these points Xy, X2y, - - . X(ay (SO that X, , is the smallest, X, is the second smallest, and X, is the

largest).

If the number of data points is odd, then /\7 = X([nn]/z)

~ X + X
If the number of data points is even, then X = (n2) 5 (n2)+1)

Sample Mode The mode is the value of the sample that occurs with the greatest frequency. The mode may
not exist, or if it does, it may not be unique. To find the mode, count the number of times each value occurs.
The sample mode is the value that occurs most frequently.

Box 2.2-3: Example Calculations of the Measures of Central Tendency

Using the directions in Box 2.2-2 and the following 10 data points (in ppm): 4,5,6,7,4,10,4,5,7, and 8,
the following is an example of computing the sample mean, median, and mode.

Sample mean:
—=4+5+6+7+4+10+4+5+7+8=60

X 60 _
. 10 0

Therefore, the sample mean is 6 ppm.

Sample median: The ordered data are: 4,4,4,5,5,6,7,7,8,and 10. Since n=10 is even, the sample
median is

Xiory * Xqporme - Xisy + Xy _S5+6
2 2 2

Thus, the sample median is 5.5 ppm.

X“':

= 5.5 ppm

Sample mode; Computing the number of times each value occurs yields:

4 appears 3 times; 5 appears 2 times; 6 appears 1 time; 7 appears 2 times, 8 appears 1 time; and 10
appears 1 time.

Because the value of 4 ppm appears the most times, it is the mode of this data set.
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Box 2.2-4: Directions for Calculating the Measures of Dispersion
Let X,, X,, ..., X, represent the n data points.

Sample Range The sample range (R) is the difference between the largest value and the smallest value of
the sample, i.e., R'= maximum - minimum. .

Sample Variance To compute the sample variance (8), compute:

St - L3y
_ i

S2— N a1

n-1
Sample Standard Deviation The sample standard deviation (s) is the square root of the sample variance, i.e.,

s = VSZ

Coefficient of Variation The coefficient of variation (CV) is the standard deviation divided by the sample mean
(section 2.2.2), i.e,, CV =s/X. The CV is often expressed as a percentage.

Interquartile Range Use the directions in section 2.2.1 to compute the 25and 75" percentiles of the data
(y(25) and y(75) respectively). The interquartile range (IQR) is the difference between these values, i.e.,
IQR = y(75) - y(25).

Box 2.2-5: Example Calculations of the Measures of Dispersion

In this box, the directions in Box 2.2-4 and the following 10 data points (in ppm): 4, 5, 6,7, 4, 10, 4,5, 7, and
8, are used to calculate the measures of dispersion. From Box 2.2-% = 6 ppm.

Sample Range R = maximum - minimum = 10 -4 =6 ppm

Sample Variance

2 2
[42+52+..+72487) - 3+ 4T48) 550 (60)
s2 = 10 = 0 . 4 ppm
10 -1 . 9
Sample Standard Deviation s = \/s—2 = ‘/LT = 2 ppm
Coefficient of Variation CV = s /,\7 = 2ppm /| 6ppm = .1_ = 33%
: 3

Interquartile Range Using the directions in section 2.2.1 to compute the 25 and 78 percentiles of the data
(y(25) and y(75) respectively): y(25)=%.1,=X3)=4 ppm and y(75) = X;.,= X5, =7 ppm. The
interquartile range (IQR) is the difference between these values: IQR =y(75) - y(25) =7 -4 = 3 ppm
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2.2.4 Measures of Association

Data often include measurements of several characteristics (variables) for each sample point and
there may be interest in knowing the relationship or level of association between two or more of these
variables. One of the most common measures of association is the correlation coefficient. Directions and an
example for calculating a correlation coefficient are contained in Box 2.2-6.

The correlation coefficient measures the linear relationship between two variables. “A linear
association implies that as one variable increases so does the other linearly, or as one variable decreases the
other increases linearly. Values of the correlation coefficient close to +1 (positive correlation) imply that as
one variable increases so does the other, the reverse holds for values close to -1. A value of +1 implies a
perfect positive linear correlation, i.e., all the data pairs lie on a straight line with a positive slope. A value of
-1 implies perfect negative linear correlation. Values close to 0 imply little correlation between the variables.

The correlation coefficient does not imply cause and effect. The analyst may say that the correlation
between two variables is high and the relationship is strong, but may not say that one variable causes the
other variable to increase or decrease without further evidence and strong statistical controls. The correlation
coefficient does not detect nonlinear relationships so it should be used only in conjunction with a scatter plot
(section 2.3.7.2). A scatter plot can be used to determine if the correlation coefficient is meaningful or if
some measure of nonlinear relationships should be used. The correlation coefficient can be significantly
changed by extreme values so a scatter plot should be used first to identify such values.

Box 2.2-6: Directions for Calculating the Correlation Coefficient with an Example

Let X,, X,, ..., X, represent one variable of the n data points and let ¥, Y, ..., Y, represent a second variable of
the n data points. The Pearson correlation coefficient, r, between X and Y is computed by:

\ Yy,
EX,Y, _ el iel
i=1 ‘n

12

" Qx? QY
Nx -2 gy -2
i=1 n =1 n

Example: Consider the following data set (in ppb). Sample 1 — arsenic (X) = 4.0, lead (Y) = 8.0; Sample 2 -
arsenic = 3.0, lead = 7.0; Sample 3 - arsenic = 2.0, lead = 7.0; and Sample 4 - arsenic = 1.0, lead = 6.0.

anX,;lo, ﬁjY,;zs, 3" x2=30, 3" r2-108, ij,.Y,. = (4x8) +...+ (1x6) = 73.
i=1 i=1 i=1 i=1 =]

73 - (10X28)

and r = 4 = 0.949

12
30 - (101(10)] (198 - (2821(28)]

Since ris close to 1, there is a strong linear relationship between these two contaminants.

|
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2.3 . GRAPHICAL REPRESENTATIONS
2.3.1 Histogram/Frequency Plots

Two of the oldest methods for summarizing data distributions are the frequency plot (Figure 2.3-1)
and the histogram (Figure 2.3-2). Both the histogram and the frequency plot use the same basic principles to
display the data: dividing the data range into units, counting the number of points within the units, and
displaying the data as the height or area within a bar graph. There are slight differences between the
histogram and the frequency plot. In the frequency plot, the relative height of the bars represents the relative
density of the data. In a histogram, the area within the bar represents the relative density of the data. The
difference between the two plots becomes more distinct when unequal box sizes are used.
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Figure 2.3-1. Example of a Frequency Plot Figure 2.3-2. Example of a Histogram

The histogram and frequency plot provide a means of assessing the symmetry and variability of the
data. If the data are symmetric, then the structure of these plots will be symmetric around a central point such
as a mean. The histogram and frequency plots will generally indicate if the data are skewed and the direction
of the skewness.

Directions for generating a histogram and a frequency plot are contained in Box 2.3-1 and an
example is contained in Box 2.3-2. When plotting a histogram for a continuous variable (e.g., concentration),
it is necessary to decide on an endpoint convention; that is, what to do with cases that fall on the boundary of
a box. With discrete variables, (e.g., family size) the intervals can be centered in between the variables. For
the family size data, the intervals can span between 1.5 and 2.5, 2.5 and 3.5, and so on, so that the whole
numbers that relate to the family size can be centered within the box. The visual impression conveyed by a
histogram or a frequency plot can be quite sensitive to the choice of interval width. The choice of the number
of intervals determines whether the histogram shows more detail for small sections of the data or whether the
data will be displayed more simply as a smooth overview of the distribution.

EPA QA/G-9 ' 23-1 QA9%6




Box 2.3-1: Directions for Generating a Histogram and a Frequency Plot

Let X,, X,, ..., X, represent the n data points. To develop a histogram or a frequency plot:

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

Select intervals that cover the range of observations. f possible, these intervals should have equal
widths. A rule of thumb is to have between 7 to 11 intervals. If necessary, specify an endpoint
convention, i.e., what to do with cases that fall on interval endpoints.

Compute the number of observations within each interval. For a frequency plot with equal interval
sizes, the number of observations represents the height of the boxes on the frequency plot.

Determine the horizontal axis based on the range of the data. The vertical axis for a frequency plot
is the number of observations. The vertical axis of the histogram is based on percentages.

For a histogram, compute the percentage of observations within each interval by dividing the
number of observations within each interval (Step 3) by the total number of observations.

For a histogram, select a common unit that corresponds to the x-axis. Compute the number of -
common units in each interval and divide the percentage of observations within each interval (Step
4) by this number. This step is only necessary when the intervals (Step 1) are not of equal widths.

Using boxes, plot the intervals against the results of Step 5 for a histogram or the intervals against
the number of observations in an interval (Step 2) for a frequency plot.

|

Box 2.3-2: Example of Generating a Histogram and a Frequency Plot

Consider the following 22 samples of a contaminant concentration (in ppm): 17.7,17.4, 22.8, 35.5, 28.6,
17.219.1,<4,7.2,<4,152, 147,149,109, 12.4,12.4,11.6, 14.7,10.2,5.2, 16.5, and 8.9.

STEP 1: This data spans O - 40 ppm. Equally sized intervals of 5 ppm will be used: 0 - 5 ppm; 5 - 10-ppm; .
etc. The endpoint convention will be that values are placed in the highest interval containing the
value. For example, a value of 5 ppm will be placed in the interval 5 - 10 ppm instead of 0 - 5 ppm.

STEP 2: The table below shows the number of observations within each interval defined in Step 1.

STEP 3: The horizontal axis for the data is from 0 to 40 ppm. The vertical axis for the frequency plot is from
0 - 10 and the vertical axis for the histogram is from 0% - 10%.

STEP 4: There are 22 observations total, so the number observations shown in the table below will be
divided by 22. The results are shown in column 3 of the table below.

STEP 5: A common unit for this data is 1 ppm. In each interval there are 5 common units so the
percentage of observations (column 3 of the table below) should be divided by 5 (column 4).

STEP 6: The frequency plot is shown in Figure 2.3-1 and the histogram is shown in Figure 2.3-2.

# of Obs % of Obs % of Obs
Interval in_Interval in Interval per ppm
0- 5ppm 2 9.10 18
5-10 ppm 3 13.60 27
10- 15 ppm 8 36.36 7.3
15-20 ppm 6 27.27 5.5
20 - 25 ppm 1 455 0.9
25 - 30 ppm 1 4.55 0.9
30 - 35 ppm 0 0.00 0.0
35-40 ppm 1 455 - 09
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2.3.2 Stem-and-Leaf Plot

The stem-and-leaf plot is used to show both the numerical values themselves and information about
the distribution of the data. It is a useful method for storing data in a compact form while, at the same time,
sorting the data from smallest to largest. A stem-and-leaf plot can be more useful in analyzing data than a

histogram because it not only allows a visualization of the data distribution, but enables the data to be
reconstructed and lists the observations in the order of magnitude. However, the stem-and-leaf plot is one of
the more subjective visualization techniques because it requires the analyst to make some arbitrary choices
regarding a partitioning of the data. Therefore, this technique may require some practice or trial and error
before a useful plot can be created. As a result, the stem-and-leaf plot should only be used to develop a
picture of the data and its characteristics. Directions for constructing a stem-and-leaf plot are given in Box
2.3-3 and an example is contained in Box 2.3-4.

Each observation in the stem-and-leaf plot consist of two parts: the stem of the observation and the
leaf. The stem is generally made up of the leading digit of the numerical values while the leaf is made up of
trailing digits in the order that corresponds to the order of magnitude from left to right. The stem is displayed

~ on the vertical axis and the data points make up the leaves. Changing the stem can be accomplished by

increasing or decreasing the digits that are used, dividing the groupings of one stem (i.e., all numbers which
start with the numeral 6 can be divided into smaller groupings), or multiplying the data by a constant factor
(i.e., multiply the data by 10 or 100). Nondetects can be placed in a single stem.

A stem-and-leaf plot roughly displays the distribution of the data. For example, the stem-and-leaf
plot of normally distributed data is approximately bell shaped. Since the stem-and-leaf roughly displays the
distribution of the data, the plot may be used to evaluate whether the data are skewed or symmetric. The top
half of the stem-and-leaf plot will be a mirror image of the bottom half of the stem-and-leaf plot for
symmetric data. Data that are skewed to the left will have the bulk of data in the top of the plot and less data
spread out over the bottom of the plot.

2.3.3 Boxand Whi.sker Plot

A box and whisker plot or box plot (Figure 2.3-3) is a schematic
diagram useful for visualizing important statistical quantities of the data. Box
plots are useful in situations where it is not necessary or feasible to portray all
the details of a distribution. Directions for generating a box and whiskers plot _|__
are contained in Box 2.3-5, and an example is contained in Box 2.3-6.

A box and whiskers plot is composed of a central box divided by a line
and two lines extending out from the box called whiskers. The length of the
central box indicates the spread of the bulk of the data (the central 50%) while
the length of the whiskers show how stretched the tails of the distribution are.

The width of the box has no particular meaning; the plot can be made quite
narrow without affecting its visual impact. The sample median is displayed as a
line through the box and the sample mean is displayed using a ‘+’ sign. Any
unusually small or large data points are displayed by a ‘*’ on the plot. A box %
and whiskers plot can be used to assess the symmetry of the data. If'the
distribution is symmetrical, then the box is divided in two equal halves by the.

median, the whiskers will be the same length and the number of extreme data Figure 2.3-3. Example

points will be distributed equally on either end of the plot. ' of a Box and Whisker
Plot
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Box 2.3-3: Directions for Generating a Stem and Leaf Plot
Let X,, X,, ..., X, represent the n data points. To develop a stem-and-leaf plot, complete the following steps:

STEP 1: Arrange the observations in ascending order. The ordered data is usually labeled (from smallest to
largest) Xy, X2y, - X(ay

STEP 2: Choose either one or more of the leading digits to be the stem values. As an example, for the value 186,
1 could be used as the stem as it is the leading digit.

STEP 3: List the stem values from smallest to largest at the left (along a vertical axis). Enter the leaf (the
remaining digits) values in order from lowest to highest to the right of the stem. Using the value 16 as a
example, if the 1 is the stem then the 6 will be the leaf. “

[T —————

Box 2.34: Example of Generating a Stem and Leaf Plot

Consider the following 22 samples of trifluorine (in ppm): 17.7, 17.4, 22.8, 35.5, 28.6, 17.2 19.1, <4, 7.2, <4, 15.2,
14.7,14.9,10.9,12.4,12.4,11.6,14.7,10.2,5.2, 16.5, and 8.9.

STEP 1: Arrange the observations in ascending order: <4, <4,5.2,7.7,8.9,10.2,10.9,11.6,12.4,12.4, 147,
14.7,14.9,15.2,16.5,17.4,17.7, 191, 22.8, 28.6, 35.5.

STEP 2: Choose either one or more of the leading digits to be the stem values. For the above data, using the fir:
digit as the stem does not provide enough detail for analysis. Therefore, the first digit will be used as a
stem; however, each stem will have two rows, one for the leaves 0 - 4, the other for the leaves 5 - 9.

STEP 3: List the stem values at the left (along a vertical axis) from smallest to largest. Enter the leaf (the
remaining digits) values in order from lowest to highest to the right of the stem. The first digit of the dat
was used as the stem values; however, each stem value has two leaf rows.

0(0,1,2,3,4) |<4 <4

05,6,7,8,9 527789

1(0,1,2,3,4) 0209 16 24 24 47 47 49
1(5,6,7,8,9) |52657477 91
2(0,1,2,3,4) |28

2(5,6,7,8,9) (86

30,1,2,3,4 |

3(,6,7,8,9) |55

Note: If nondetects are present, place them first in the ordered list, using a symbol such as <L. If multiple detectior
limits were used, place the nondetects in increasing order of detection limits, using symbols such as <L1, <02, etc.

If the first stem extends from zero to a value above the detection limit, then nondetects can be placed in this interva
as shown in the example above. Otherwise, special intervals dedicated to nondetects can be used.
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STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

Box 2.3-5: Directions for Generating a Box and Whiskers Plot
Set the vertical scale of the plot based on the maximum and minimum values of the data set. Selecta
width for the box plot keeping in mind that the width is only a visualization tool. Label the width w; the
horizontal scale then ranges from -'2W to ¥2W.
Compute the upper quartile (Q(.75), the 75 percentile) and the lower quartile (Q(.25), the 28
percentile) using Box 2.2-1. Compute the sample mean and median using Box 2.2-2. Then, compute
the interquartile range (IQR) where IQR = Q(.75) - Q(.25).

Draw a box through points (-2W, Q(.75) ), (%W, Q (.25) ), ( “aW, Q(.25) ) and ( 2W, Q(.75) ). Draw
a line from (¥2W, Q(.5)) to (-*2W, Q(.5)) and mark point (0x) with (+).

Compute the upper end of the top whisker by finding the largest data value X less than
Q(.75) + 1.5( Q(.75) - Q(.25) ). Draw a line from (0, Q(.75)) to (0, X).

Compute the lower end of the bottom whisker by finding the smallest data value Y greater than
Q(.25) - 1.5( Q(.75) - Q(.25) ). Draw a line from (0, Q(.25))"to (0, Y).

For all points X* > X, place an asterisk (*) at the point (0, X*).

For all points Y* <Y, place an asterisk (*) at the point (0, Y*).

Consider the following 22 samples of trifluorine (in ppm) listed in order from smallest to largest: 4.0,6.1, 9.8, 10.7,
10.8,11.5,11.6,12.4,12.4, 14,6, 147,147, 16.5, 17, 17.5, 20.6, 20.8, 25.7, 25.9, 26.5, 32.0, and 35.5.

Box 2.3-6. Example of a Box and Whiskers Plot

STEP 1: The data ranges from 4.0 to 35.5 ppm. This is the range of the vertical axis. Arbitrarily, a width of 4 will
be used for the horizontal axis.

STEP 2: Using the formulas in Box 2.2-2, the sample mean = 16.87 and the 0-
median = 14.70. Using Box 2.2-1, Q(.75) = 20.8 and Q(.25) = 11.5. :
Therefore, IQR=20.8-11.5=93. - 35 ¥

STEP 3: In the figure, a box has been drawn through points ( -2, 20.8), (-2, 11.5), 30:_
(2,11.5),(2,20.8). Aline has been drawn from (-2, 14.7)to (2, 14.7), -
and the point (0, 16.87) has been marked with a '+’ sign. 5=

STEP 4: Q(.75) + 1.5(9.3) = 34.75. The closest data value to this number, but less 20—
than it, is 32.0. Therefore, a line has been drawn in the figure from B R
(0,20.8)to (0, 32.0). 15
Q(.25) - 1.5(9.3) =-2.45. The closest data value to this number, but greater 10;'
than it, is 4.0. Therefore, a line has been drawn in the figure from :
(0,4)to (0, 11.5). 5

STEP 5: There is only 1 data value greater than 32.0 which is 35.5. Therefore, the 0-
point ( 0, 35.5) has been marked with an asterisk. There are no data values
less than 4.0.
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2.3.4 Ranked Data Plot

A ranked data plot is a useful graphical representation that is easy to construct, easy to interpret, and
makes no assumptions about a model for the data. The analyst does not have to make any arbitrary choices
regarding the data to construct a ranked data plot (such as cell sizes for a histogram). In addition, a ranked
data plot displays every data point; therefore, it is a graphical representation of the data instead of a summary
of the data. Directions for developing a ranked data plot are given in Box 2.3-7 and an example is given in
Box 2.3-8.

A ranked data plot is a plot of the data from smallest to largest at evenly spaced intervals (Figure
2.3-4). This graphical representation is very similar to the quantile plot described in section 2.3.5. A ranked
data plot is marginally easier to generate than a quantile plot; however, a ranked data plot does not contain as
much information as a quantile plot. Both plots can be used to determine the density of the data points and
the skewness of the data; however, a quantile plot contains information on the quartiles of the data whereas a
ranked data plot does not.

Data Values
[
[ ]

! ! ! { M )

Smallest # | argest

Figure 2.3-4 Example of a Ranked Data Plot

A ranked data plot can be used to determine the density of the data values, i.e., if all the data values
are close to the center of the data with relatively few values in the tails or if there is a large amount of values
in one tail with the rest evenly distributed. The density of the data is displayed through the slope of the graph.

A large amount of data values has a flat slope, i.e., the graph rises slowly. A small amount of data values has
a large slope, i.e., the graph rises quickly. Thus the analyst can determine where the data lie, either evenly
distributed or in large clusters of points. In Figure 2.3-4, the data rises slowly up to a point where the slope
increases and the graph rises relatively quickly. This means that there is a large amount of small data values
and relatively few large data values.

A ranked data plot can be used to determine if the data are skewed or if they are symmetric. A
ranked data plot of data that are skewed to the right extends more sharply at the top giving the graph a
convex shape. A ranked data plot of data that are skewed to the left increases sharply near the bottom giving
the graph a concave shape. If the data are symmetric, then the top portion of the graph will stretch to upper
right corner in the same way the bottom portion of the graph stretches to lower left, creating a s-shape.
Figure 2.3-4 shows a ranked data plot of data that are skewed to the right.
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Box 2.3-7: Directions for Generating a Ranked Data Plot

Let X,, X, ..., X, represent the n data points. Let X, fori=1ton,
be the data listed in order from smallest to largest so that X, (i = 1)
is the smallest, X ,, (i = 2) is the second smallest, and X, (i=n) is
the largest. To generate a ranked data plot, plot the ordered X
values at equally spaced intervals along the horizontal axis.

Box 2.3-8: Example of Generating a Ranked Data Plot

Consider the following 22 samples of triflourine (in ppm): 17.7, 17.4,22.8, 35.5, 28.6, 17.2 19.1,
49,7.2,40,152,14.7,149,10.9,12.4, 124, 11.6, 14.7,10.2, 5.2, 16.5, and 8.9. The data
listed in order from smallest to largest X, along with the ordered number of the observation (i) are:

i X i Xy
1 4.0 12 14.7
2 4.9 13 14.9
3 52 14 15.2
4 7.7 15 16.5
5 8.9 16 17.2
6 10.2 17 17.4
7 10.9 18 17.7
8 11.6 19 191
9 12.4 20 22.8
10 12.4 21 28.6
1" 14.7 22 355

A ranked data plot of this data is a blot of the pairs (i, §,). This plot is shown below:

40¢

35 ¢

Data (ppm)
- N N w
(8] o ()} o
(-]
-]
[
[ ]

—
o
T
[}
[

] . .

(8}
T
L]
L

0 L 1 1 1 1 il 1 1 1 1 1] ] 1 1 1 1 1 Il 1 1 1 ] J

Smallest » Largest
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2.3.5 Quantile Plot

A quantile plot (Figure 2.3-5) is a graphical representation of the data that is easy to construct, easy
to interpret, and makes no assumptions about a model for the data. The analyst does not have to make any
arbitrary choices regarding the data to construct a quantile plot (such as cell sizes for a histogram). In
addition, a quantile plot displays every data point; therefore, it is a graphical representation of the data
instead of a summary of the data.

A quantile plot is a graph of the quantiles (section 2.2.1) of the data. The basic quantile plot is
visually identical to a ranked data plot except its horizontal axis varies from 0.0 to 1.0, with each point
plotted according to the fraction of the points it exceeds. This allows the addition of vertical lines indicating
the quartiles or, any other quantiles of interest. Directions for developing a quantile plot are given in Box
2.3-9 and an example is given in Box 2.3-10.

F— Interquartile Range ———p»

Lower Upper
Quartile Quartile

P
|

jy—— —_—

Data Values
N

Median

1 n i . 1 N —_—
0 0.2 0.4 06 0.8 1
Fraction of Data (f-values)

0

Figure 2.3-5 Example of a Quantile Plot of Skewed Data

A quantile plot can be used to read the quantiie information such as the median, quartiles, and the
interquartile range. In addition, the plot can be used to determine the density of the data points, e.g., are all
the data values close to the center with relatively few values in the tails or are there a large amount of values
in one tail with the rest evenly distributed? The density of the data is displayed through the slope of the
graph. A large amount of data values has a flat slope, i.e., the graph rises slowly. A small amount of data
values has a large slope, i.e., the graph rises quickly. A quantile plot can be used to determine if the data are
skewed or if they are symmetric. A quantile plot of data that are skewed to the right is steeper at the top right
than the bottom left, as in Figure 2.3-5. A quantile plot of data that are skewed to the left increases sharply

near the bottom left of the graph. If the data are symmetric then the top portion of the graph will stretch to
the upper right corner in the same way the bottom portion of the graph stretches to the lower left, creating an
s-shape. '
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Box 2.3-9: Directions for Generating a Quantile Plot

Let X,, X, ..., X, represent the n data points. To obtain a quantile plot, let X, for
i=1to n, be the data listed in order from smallest to largest so that X, (i = 1) is
the smallest, X, (i = 2) is the second smallest, and X, (i = n) is the largest. For
each i, compute the fraction f= (i - 0.5)/n. The quantile plot is a plot of the pairs
{f. X)), with straight lines connecting consecutive points.

Box 2.3-10: Example of Generating a Quantile Plot
Consider the following 10 data points: 4 ppm, 5 ppm, 6 ppm, 7 ppm, 4 ppm, 10 ppm, 4 ppm, 5 ppm, 7 ppm,
and 8 ppm. The data ordered from smallest to largest, X,, are shown in the first column of the table below
and the ordered number for each observation, i, is shown in the second column. The third column displays the
values f for each i where f= (i - 0.5)/n.
X i f_ X A _f_
1 0.05 6 6 0.55
4 2 0.15 7 7 0.65
4 3 0.25 7 8 0.75
5 4 0.35 8 .9 0.85
5 5 045 10 10 0.95
The pairs (f. X;,) are then plotted to yield the following quantile plot:
101
E 8f
Q.
e
8
a st
4
0 0.2 04 06 08 1.
Fraction of Data (f-values)
Note that the graph curves upward; therefore, the data appear to be skewed to the right.
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2.3.6 Normal Probability Plot (Quantile-Quantile Plot)

There are two types of quantile-quantile plots or q-q plots. The first type, an empirical quantile-
quantile plot (section 2.3.7.4), involves plotting the quantiles of two data variables against each other. The
second type of a quantile-quantile plot, a theoretical quantile-quantile plot, involves graphing the quantiles of
a set of data against the quantiles of a specific distribution. The following discussion will focus on the most
common of these plots for environmental data, the normal probability plot (the normal gq-q plot); however, the
discussion holds for other g-q plots. The normal probability plot is used to roughly determine how well the
data set is modeled by a normal distribution. Formal tests are contained in Chapter 4, section 2. Directions
for developing a normal probability plot are given in Box 2.3-11 and an example is given in Box 2.3-12.

A normal probability plot is the graph of the quantiles of a data set against the quantiles of the
normal distribution using normal probability graph paper (Figure 2.3-6). If the graph is linear, the data may
be normally distributed. If the graph is not linear, the departures from linearity give important information
about how the data distribution deviates from a normal distribution.

If the graph of the normal probability plot is not linear, the graph may be used to determine the
degree of symmetry (or asymmetry) displayed by the data. If the data are skewed to the right, the graph is
convex. If the data are skewed to the left, the graph is concave. If the data in the upper tail fall above and the
data in the lower tail fall below the quartile line, the data are too slender to be well modeled by a normal
distribution, i.e., there are fewer values in the tails of the data set than what is expected from a normal
distribution. If the data in the upper tail fall below and the data in the lower tail fall above the quartile line,
then the tails of the data are too heavy to be well modeled using a normal distribution, i.e., there are more
values in the tails of the data than what is expected from a normal distribution. A normal probability plot can
be used to identify potential outliers. A data value (or a few data values) much larger or much smaller than
the rest will cause the other data values to be compressed into the middle of the graph, ruining the resolution.

Box 2.3-11: Directions for Constructing a Normal Probability Plot
Let X,, X,, ..., X, represent the n data points.

STEP 1: For each data value, compute the absolute frequency, AF The absolute frequency is the number
of times each value occurs. For distinct values, the absolute frequency is 1. For non-distinct
observations, count the number of times an observation occurs. For example, consider the data 1,
2, 3, 3. The absolute frequency of value 1 is 1 and the absolute frequency of value 2 is 1. The
absolute frequency of value 3 is 2 since 3 appears 2 times in the data set.

STEP 2: Compute the cumulative frequencies, CE The cumulative frequency is the number of data points

{
that are less than orequal to X i.e., CF, = EAF; Using the data given in step 2, the
Je=!
cumulative frequency for value 1 is 1, the cumulative frequency for value 2 is 2 (1+1), and the
cumulative frequency for value 3is 4 (1+1+2).

n+

2.3-6). If the graph of these pairs approximately forms a straight line, then the data are probably
normally distributed. Otherwise, the data may not be normally distributed.

CF,
STEP 3: Compute ¥, = 100 x i 1') and plot the pairs (Y, X)) using normal probability paper (Figure
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Box 2.3-12: Example of Normal Probability Plot
Consider the following 15 data points: 5, 5,6, 6, 8, 8,9, 10, 10, 10, 10, 10, 12, 14, and 15.
STEP 1: Because the value 5 appears 2 times, its absolute frequency is 2. Similarly, the absolute frequency of 6}js
2,0f8is2,0f9is 1,0f 10is 5, etc. These values are shown in the second column of the table below.
STEP 2: The cumulative frequency of the data value 8 is 6 because there are 2 values of 5, 2 values of 6, and 2
values of 8. The cumulative frequencies are shown in the 3column of the table.
CF,
STEP 3: Thevalues ¥, = 100 x ( l’)for each data point are shown in column 4 of the table below. A plot o
n+
these pairs (Y, X;) using normal probability paper is also shown below.
Individual Absolute Cumulative
i X; Frequency AF; Frequency CF; Y,
1 5 2 2 12.50
2 6 2 4 25.00
3 8 2 6 37.50
4 9 1 7 43.75
5 10 5 12 75.00
6 12 1 13 81.25
7 14 1 14 87.50
8 | 15 1 15 93.75 : ||
20
18
16
///*
14 - )'r/
12 )
X 10 ______-———9'9
A
8 /}(
6 =
4
2
2 5 10 20 30 40 5 60 70 8 %0 %5 98
Y
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" 2.3.7 Plots for Two or More Variables

Data often consist of measurements of several characteristics (variables) for each sample point in the
data set. For example, a data set may consist of measurements of weight, sex, and age for each animal in a
sample or may consist of daily temperature readings for several cities. In this case, graphs may be used to
compare and contrast different variables. ‘For example, the analyst may wish to compare and contrast the
temperature readings for different cities, or different sample points (each containing several variables) such
the height, weight, and sex across individuals in a study.

To compare and contrast individual data points, some special plots have been developed to display
multiple variables. These plots are discussed in section 2.3.7.1. To compare and contrast several variables,
collections of the single variable displays described in previous sections are useful. For example, the analyst
may generate box and whisker plots or histograms for each variable using the same axis for all of the
variables. Separate plots for each variable may be overlaid on one graph, such as overlaying quantile plots
for each variable on one graph. Another useful technique for comparing two variables is to place the stem
and leaf plots back to back. In addition, some special plots have been developed to display two or more
variables. These plots are described in sections 2.3.7.2 through 2.3.7.4. '

2.3.7.1 Plots for Individual Data Points

Since it is difficult to visualize data in more than 2 or 3 dimensions, most of the plots developed to
display multiple variables for individual data points involve representing each variable as a distinct piece of a
two-dimensional figure. Some such plots include Profiles, Glyphs, and Stars (Figure 2.3-7). These graphical
representations start with a specific symbol to represent each data point, then modify the various features of
the symbol in proportion to the magnitude of each variable. The proportion of the magnitude is determined
by letting the minimum value for each variable be of length 0, the maximum be of length 1. The remaining
values of each variable are then proportioned based on the magnitude of each value in relation to the
maximum and minimum.

Profile Plot Glyph Plot Star Plot

Figure 2.3-7. Example of Graphical Representations of Multiple
Variables

A profile plot starts with a line segment of a fixed length. Then lines spaced an equal distance apart
and extended perpendicular to the line segment represent each variable. A glyph plot uses a circle of fixed
radius. From the perimeter, parallel rays whose sizes are proportional to the magnitude of the variable extend
from the top half of the circle. A star plot starts with a point where rays spaced evenly around the circle
represent each variable and a polygon is then drawn around the outside edge of the rays.
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2.3.7.2 Scatter Plot

For data sets consisting of paired observations where two or more continuous variables are measured
for each sampling point, a scatter plot is one of the most powerful tools for analyzing the relationship
between two or more variables. Scatter plots are easy to construct for two variables (Figure 2.3-8) and many
computer graphics packages can construct 3-dimensional scatter plots. Directions for constructing a scatter
plot for two variables are given in Box 2.3-13 along with an example.

A scatter plot clearly shows the
relationship between two variables. Both
potential outliers from a single variable and’ 40
potential outliers from the paired variables | * X

may be identified on this plot. A scatter
plot also displays the correlation between
the two variables. Scatter plots of highly
linearly correlated variables cluster
compactly around a straight line. In
addition, nonlinear patterns may be obvious
on a scatter plot. For example, consider two xX %
variables where one variable is .
approximately equal to the square of the 0
other. A scatter plot of this data would Chromium VI (ppb)
display a u-shaped (parabolic) curve. '
Another important feature that can be Figure 2.3-8 Example of a Scatter Plot
detected using a scatter plot is any
clustering effect among the data.

PCE (ppb)
N w
=3 =)
T T

-

(=]
T
E3

Box 2.3-13: Directions for Generating a Scatter Plot and an Example

Let X,, X,, ..., X, represent one variable of the n data points and let ¥ Y,, ..., Y, represent a second variable of
the n data points. The paired data can be written as (XY)) fori =1, ..., n. To construct a scatter plot, plot the
first variable along the horizontal axis and the second variable along the vertical axis. It does not matter which
variable is placed on which axis.

Example: A scatter plot will be developed for the data below. PCE values are displayed on the vertical axis a
Chromium V! values are displayed on the horizontal axis of Figure 2.3-8.

PCE Chromium PCE Chromium PCE Chromium
(ppb) VI (ppb) (ppb) | VI (ppb) (ppb) VI (ppb)
14.49 3.76 2.23 0.77 4.14 2.36
37.21 6.92 3.51 1.24 3.26 0.68
10.78 1.05 6.42 3.48 522 0.65
18.62 6.30 2.98 1.02 4.02 0.68
7.44 1.43 3.04 1.15 6.30 1.93
37.84 6.38 12.60 544 8.22 3.48
13.59 5.07 3.56 2.49 1.32 273
4.31 3.56 7.72 3.01 7.73. 1.61
: 5.88 1.42
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2.3.7.3 Extensions of the Scatter Plot

It is easy to construct a 2-dimensional scatter plot by hand and many software packages can construct
a useful 3-dimensional scatter plot. However, with more than 3 variables, it is difficult to construct and
interpret a scatter plot. Therefore, several graphical representations have been developed that extend the idea
of a scatter plot for data consisting of 2 or more variables.

The simplest of these graphical

representations is a coded scatter plot.
In this case, all possible pairs of data are 0 o Chromium vs. PCE
given a code and plotted on one scatter - Atazine vs, PCE
plot. For example, consider a data set of 30 Atrazine vs. Chramium IV
3 variables: variable A, variable B, and *
variable C. Using the first variable to
designate the horizontal axis, the analyst |
may choose to display the pairs (A, B) o Lo E S \

using an X, the pairs (A, C)using a Y, S %Bs T

and the pairs (B, C) using a Z on one Clmes ¥

scatter plot. All of the information 0 10 20
described above for a scatter plot is also (ppb)

available on a coded scatter plot.

20

{(ppb)

However, this method assumes that the Figure 2.3-9. Example of a Coded Scatter Plot

ranges of the three variables are '

comparable and does not provide information on three-way or higher interactions between the variables. An
example of a coded scatter plot is given in Figure 2.3-9. '

A parallel coordinate plot also extends the idea of a scatter plot to higher dimensions. The parallel
coordinates method employs a scheme where coordinate axes are drawn in parallel (instead of perpendicular).
Consider a sample point X consisting of values X | for variable 1, X, for variable 2, and so on up to X , for
variable p. A parallel coordinate plot '

is constructed by placing an axis for l
each of the p variables parallel to 0
each other and plotting X | on axis 1,
X, on axis 2, and so on through X
on axis p and joining these points
with a broken line. This method
contains all of the information
available on a scatter plot in addition 0
to information on 3-way and higher
interactions (e.g., clustering among
three variables). However, for p
variables one must construct (p+1)/2
parallel coordinate plots in order to , | Date Values for
display all possible pairs of variables. 0 12 3 4 5 6 7 g verwe?

; Data Values for
Variable 1
40

, Data Values for
Variable 2

1 i 1

1 12 13 14

8//9 10 1

An example of a parallel coordinate

Fi 23-10. E faP i
plot is given in Figure 2.3-10, igure xample of a Parallel Coordinates Plot
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A scatter plot matrix is another useful method of extending scatter plots to higher dimensions. In
this case, a scatter plot is developed for all possible pairs of the variables which are then displayed in a matrix
format. This method is easy to implement and provides a concise method of displaying the individual scatter
plots. However, this method does not contain information on 3-way or higher interactions between variables.
An example of a scatter plot matrix is contained in Figure 2.3-11.
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Figure 2.3-11. Example of a Matrix Scatter Plot

2.3.7.4 Empirical Quantile-Quantile Plot

An empirical quantile-quantile (g-q) plot involves plotting the quantiles of two data variables against
each other. This plot is used to compare distributions of two or more variables; for example, the analyst may
wish to compare the distribution of lead and iron samples from a drinking water well. This plot is similar in
concept to the theoretical quantile-quantile plot and yields similar information in regard to the distribution of
two variables instead of the distribution of one variable in relation to a fixed distribution. Directions for
constructing an empirical q-q plot with an example are given in Box 2.3-14.

An empirical g-q plot is the graph of the quantiles of one variable of a data set against the quantiles
of another variable of the data set. This plot is used to determine how well the distribution of the two
variables match. If the distributions are roughly the same, the graph is linear or close to linear. If the
distributions are not the same, than the graph is not linear. Even if the graph is not linear, the departures from
linearity give important information about how the two data distributions differ. For example, a g-q plot can
be used to compare the tails of the two data distributions in the same manner a normal probability plot was
used to compare the tails of the data to the tails of a normal distribution. In addition, potential outliers (from
the paired data) may be identified on this graph.
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Box 2.3-14: Directions for Constructing an Empirical Q-Q Plot with an Example

Let X,, X,, ..., X, represent n data points of one variable and let Y, Y,, ..., Y, represent a second variable of m
data points. Let X;,, fori=1to n, be the first variable listed in order from smallest to largest so that X, (i = 1)
is the smallest, X ,, (i = 2) is the second smallest, and X, (i = n) is the largest. LetY[;,, fori=1ton, be the
second variable listed in order from smallest to largest so that ¥, (i = 1) is the smallest, Y, (i=2) is the
second smallest, and Y, ,,, (i = m) is the largest.

Ifm = n: If the two variables have the same number of observations, then an empirical g-q plot of the two
variables is simply a plot of the ordered values of the variables. Since n=m, replace m by n. A plot of the pairs
Ky Yo Kezy Yz, - Kiny Yiay) is @an empirical quantile-quantite plot.

If n > m: Iif the two variables have a different number of observations, then the empirical quantile-quantile plot
will consist of m (the smaller number) pairs. The empirical g-q plot will then be a plot of the ordered Y values
against the interpolated X values. Fori=1,i=2, ...,i=m, letv = (n/m)(i - 0.5) + 0.5 and separate the result
into the integer part and the fractional pan, i.e., let v =j + g where j is the integer part and g is the fraction part.
If g = 0, plot the pair (Y;,, X;;;). Otherwise, plot the pair (Y;,, (1-9)X;y + 9X;.1,). A plot of these pairs is an
empirical quantile-quantite plot.

Example: Consider two sets of contaminant readings from two separate drinking water wells at the same site.
The data from well 1 are: 1.32, 3.26, 3.56, 4.02, 4.14, 5.22, 6.30, 7.72, 7.73, and 8.22. The data from well 2
are: 0.65,0.68,0.68, 1.42, 1.61, 1.93, 2.36, 2.49, 2.73, 3.01, 3.48, and 5.44. An empirical g-q plot will be
used to compare the distributions of these two wells. Since there are 10 observations in well 1,.and 12

~ observations in well, the case for n= m will be used. Therefore, fori=1, 2, ..., 10, compute:

i=1 v = %(1—.5)+.5 = 1.1 soj=1andg=.1. Since g0, plot (1.32,(.9).65+(.1).68)=(1.32, 0.653)
i=2 v = —;%(2—.5)+.5 = 2.3 so0j=2and g=.3. Since g0, plot (3.26,(.7).68+(.3).68)=(3.26, 0.68)
i=3: v = :—(2)(3 -5)+.5 = 3.5 soj=3andg=.5. Since g0, plot (3.56,(.5).68+(.5)1.42)=(3.56,1.05)

Continue this process fori=4, 5,6,7, 8,9, and 10 to yield the following 10 data pairs (1.32, 0.653), (3.26,
0.68), (3.56, 1.05), (4.02, 1.553), (4.14, 1.898), (5.22, 2.373), (6.30, 2.562), (7.72, 2.87), (7.73, 3.339), and
(8.22, 5.244). These pairs are plotted below, along with the best fitting regression line.

10

Quantiles of Well 2
=

0 " 1 . L 1 l " |
0 2 4 6 8 10

Quantifes of Weli 1

This graph ihdicates the variables behave roughly the same since there are no substantial deviations from the
fitted line.
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2.3.8 Plots for Temporal Data

Data collected over specific time intervals (e.g., monthly, biweekly, or hourly) have a temporal
component. For example, air monitdring measurements of a pollutant may be collected once a minute or once
a day; water quality monitoring measurements of a contaminant level may be collected weekly or monthly.

An analyst examining temporal data may be interested in the trends over time, correlation among time
periods, and cyclical patterns. Some graphical representations specific to temporal data are the time plot,
correlogram, and variogram.

Data collected at regular time intervals are called time series. Time series data may be analyzed
using Box-Jenkins modeling and spectral analysis. Both of these methods require a large amount of data
collected at regular intervals and are beyond the scope of this guidance. It is recommended that the interested
reader consult a statistician.

The graphical representations presented in this section are recommended for all data that have a
temporal component regardless of whether formal statistical time series analysis will be used to analyze the
data. If the analyst uses a time series methodology, the graphical representations presented below will play
an important role in this analysis. If the analyst decides not to use time series methodologies, the graphical
. representations described below will help identify temporal patterns that need to be accounted for in the
analysis of the data. '

The analyst examining temporal environmental data may be interested in seasonal trends, directional
trends, serial correlation, and stationarity. Seasonal trends are patterns in the data that repeat over time, i.e.,
the data rise and fall regularly over one or more time periods. Seasonal trends may be large scale, such as a
yearly trend where the data show the same pattern of rising and falling over each year, or the trends may be
small scale, such as a daily trend where the data show the same pattern for each day. Directional trends are
downward or upward trends in the data which is of importance to environmental applications where
contaminant levels may be increasing or decreasing. Serial correlation is a measure of the extent to which
successive observations are related. If successive observations are related, statistical quantities calculated
without accounting for serial correlation may be biased. Finally, another item of interest for temporal data is
stationarity (cyclical patterns). Stationary data look the same over all time periods. Directional trends and
increasing (or decreasing) variability among the data imply that the data are not stationary.

Temporal data are sometimes used in environmental applications in conjunction with a statistical
hypothesis test to determine if contaminant levels have changed. If the hypothesis test does not account for
temporal trends or seasonal variations, the data must achieve a “steady state” before the hypothesis test may
be performed. Therefore, the data must be essentially the same for comparable periods of time both before
and after the hypothesized time of change.

Sometimes multiple observations are taken in each time period. For example, the sampling design
may specify selecting 5 samples every Monday for 3 months. If this is the case, the time plot described in
section 2.3.8.1 may be used to display the data, display the mean weekly level, display a confidence interval
for each mean, or display a confidence interval for each mean with the individual data values. A time plot of
all the data can be used to determine if the variability for the different time periods changes. A time plot of
the means can be used to determine if the means are possibly changing between time periods. In addition,
each time period may be treated as a distinct variable and the methods of section 2.3.7 may be applied.
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2.3.8.1 Time Plot

One of the simplest plots to generate that provides a large amount of information is a time plot. A
time plot is a plot of the data over time. This plot makes it easy to identify large-scale and small-scale trends
over time. Small-scale trends show up on a time plot as fluctuations in smaller time periods. For example,
ozone levels over the course of one day typically rise until the afternoon, then decrease, and this process is
repeated every day. Larger scale trends, such as seasonal fluctuations, appear as regular rises and drops in
the graph. For example, ozone levels tend to be higher in the summer than in the winter so ozone data tend to
show both a daily trend and a seasonal trend. A time plot can also show directional trends and increased
variability over time. Possible outliers may also be easily identified using a time plot.

20 [
Foox
" 16 ¥ "
*
g ® * b3 *
© L ¥ % ® *¥ *
> 10 bx * ¥ ¥ % * oK * * oy
[ L xX * *X * % * ¥
g I * * ** * *® * x*
0 1 | [ 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time

Figure 2.3.12 Example of a Time Plot Showing a Slight Downward Trend

A time plot (Figure 2.3-12) is constructed by numbering the observations in order by time. The time
ordering is plotted on the horizontal axis and the corresponding observation is plotted on the vertical axis.
The points plotted on a time plot may be joined by lines; however, it is recommended that the plotted points
not be connected to avoid creating a false sense of continuity. The scaling of the vertical axis of a time plot is
of some importance. A wider scale tends to emphasize large-scale trends, whereas a smaller scale tends to
emphasize small-scale trends. Using the ozone example above, a wide scale would emphasize the seasonal
component of the data, whereas a smaller scale would tend to emphasize the daily fluctuations. Directions for
constructing a time plot are contained in Box 2.3-15 along with an example.

Box 2.3-15; Directions for Generating a Time Plot and an Example

Let X,, X,, ..., X, represent n data points listed in order by time, i.e., the subscript represents the ordered time
interval. A plot of the pairs (i, ) is a time plot of this data.

Example: Consider the following 50 daily observations (listed in order by day): 10.05, 11.22, 15.9, 11.15, 10.53,
13.33,11.81, 14.78, 10.93, 10.31, 7.95, 10.11, 10.27, 14.25, 8.6, 9.18, 12.2,9.52, 7.59, 10.33, 12.13, 11.31,
10.13,7.11,6.72, 8.97, 10.11, 7.72, 9.57, 6.23, 7.25, 8.89, 9.14, 12.34, 9.99, 11.26, 5.57, 9.55, 8.91, 7.11, 6.04,
8.67,5.62,5.99, 5.78,8.66,5.8,6.9, 7.7, 8.87. By labeling day 1 as 1, day 2 as 2, and so on, a time plot is
constructed by plotting the pairs (i, § where i represents the number of the day and Xrepresents the concentration
level. A time plot of this data is shown in Figure 2.3-12.
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2.3.8.2 Plot of the Autocorrelation Function (Correlogram)

Serial correlation is a measure of the extent to which successive observations are related. If
successive observations are related, either the data must be transformed or this relationship must be
accounted for in the analysis of the data. The correlogram is a plot that is used to display serial correlation
when the data are collected at equally spaced time intervals. The autocorrelation function is a summary of the
serial correlations of data. The T autocorrelation coefficient () is the correlation between points that are 1
time unit (k) apart; the 2* autocorrelation coefficient (3 is the correlation between points that are 2 time
units (k,) apart; etc. A correlogram (Figure 2.3-13) is a plot of the sample autocorrelation coefficients in
which the values of k versus the values of mre displayed. Directions for constructing a correlogram are
contained in Box 2.3-16; example calculations are contained in Box 2.3-17. For large sample sizes, a
correlogram is tedious to construct by hand; therefore, software like DataQUEST (QA/G-9D)\’should be used.

The correlogram is used for modeling

time series data and may be used to determine if 1.25
* serial correlation is large enough to create 1%
problems in the analysis of temporal data using *
. . . . 0.75}
other methodologies besides formal time series «
methodologies. A quick method for determining < 05f : N
if serial correlation is large is to place horizontal = 025l e T
lines at £2A/n on the correlogram (shown as X % S X
dashed lines on Figure 2.3-13). Autocorrelation 0 A "L
coefficients that exceed this value require further -0.26 X
investigation. 0.5 s . s \ . .
“ o 5 10 15 20 25 30
k

In application, the correlogram is only
useful for data at equally spaced intervals. To Figure 2.3-13. Example of a Correlogram
relax this restriction, a variogram may be used :
instead. The variogram displays the same
information as a correlogram except that the data may be based on unequalily spaced time intervals. For more
information on the construction and uses of the variogram, consult a statistician.

Box 2.3-16: Directions for Constructing a Correlogram

Let X;, X,, ..., X, represent the data points ordered by time for equally spaced time points, i.e., Xvas collected at
time 1, X, was collected at time 2, and so on. To construct a correlogram, first compute the sample autocorrelation
coefficients. Sofork =0, 1, ..., compute fwhere

g < oy >
re = 2k and g = E (‘Xt - X) (/Yt—k - X).
go t=k+l

Once the 1, have been computed, a correlogram is the graph (k,yfork=0,1,...,andsoon. Asa
approximation, compute up to approximately k = n/6. Also, note that,= 1. Finally, place horizontal lines at +a/n.
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Box 2.3-17: Example Calculations for Generating a Correlogram
A correlogram will be constructed using the following four hourly data points: hour 1: 4.5, hour 2: 3.5, hour 3: 2.5,
and hour 4: 1.5. Only four data points are used so that all computations may be shown. Therefore, the idea that
no more than n/6 autocorrelation coefficients should be computed will be broken for illustrative purposes. The first
step to constructing a correlogram is to compute the sample mean (box 2-2) which is 3 for the 4 points. Then,
) .
2
4 E(VFJ_’) ) 2 2 2
- 4.5-3)+3.5-3)"+(2.5-3)*+(1.5-3
& = E(yr_)—))())1—0_)_/) = = 4 = ( ) ( )4( ) ( ) =125
t=1
4
-3 -3 '
200D, 3y0,3) + (433)05-3) + 04-)05-)
4 4
_ (3.5—3)(4.5l-3)+(2.5—3)(3.5—3)+(1.5-3)(2.5-3) _ 1.25 - 03125
2 .
4
-3 -3
L0 36,3) + 6,30,
&2 2 3 :
_ (2.5-3)4.5-3) + (1.5-3)(3.5-3) _ -1.5 = -0375
4
4
-3)(y,5=-3
_ ,%3(” 0:-373) 0730, 73) . (15-3)4.5-3) | 225
g = = : = = = -0.5625
4 4 4 4
So rl =ﬂ=£}£=0'25’r2=é=ﬂ=—0_3,and r3=é=M=—0_45.
1.25 1.25 1.25 '

Remember r, = 1. Thus, the correlogram of these data is a plot of (0, 1) (1, 0.25), (2, -0.3) and (3, -0.45) with two
horizontal lines at +£2¢4 (+1). This graph is shown below.

In this case, it appears that the observations are not serially correlated because all of the correlogram points are.
within the bounds of +2/4 (£1.0). In Figure 2.3-13, if k represents months, then the correlogram shows a yearly
correlation between data points since the points at k=12 and k=24 are out of the bounds of #. This correlation
will need to be accounted for when the data are analyzed. '
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|—|-;-— Box 2.3-17: Example Calculations for Generating a Correlogram '
(Continued)
" 1 * +1.0
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= 0
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08
-1 X ; ) ; -1.0
0 1 2 3 4
k
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2.3.8.3 Multiple Observations Per Time Period

Sometimes in environmental data collection, multiple observations are taken for each time period.
For example, the data collection design may specify collecting and analyzing 5 samples from a drinking well
every Wednesday for three months. If this is the case, the time plot described in section 2.3.8.1. may be used
to display the data, display the mean weekly level, display a confidence interval for each mean, or display a
confidence interval for each mean with the individual data values. A time plot of all the data will allow the
analyst to determine if the variability for the different collection periods varies. A time plot of the means will
allow the analyst to determine if the means may possibly be changing between the collection periods. In
addition, each collection period may be treated as a distinct variable and the methods described in section
2.3.7 may be applied. :
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2.3.9 Plots for Spatial Data

The graphical representations of the preceding sections may be useful for exploring spatial data.
However, an analyst examining spatial data may be interested in the location of extreme values, overall
spatial trends, and the degree of continuity among neighboring locations. Graphical representations for
spatial data include postings, symbol plots, correlograms, h-scatter plots, and contour plots.

The graphical representations presented in this section are recommended for all spatial data
regardless of whether or not geostatistical methods will be used to analyze the data. The graphical
representations described below will help identify spatial patterns that need to be accounted for in the analysis
of the data. If the analyst uses geostatistical methods such as kriging to analyze the data, the graphical
representations presented below will play an important role in geostatistical analysis.

2.3.9.1 Posting Plots

A posting plot (Figure 2.3-14) is a map of data locations along with corresponding data values. Data
posting may reveal obvious errors in data location and identify data values that may be in error. The graph of

. the sampling locations gives the analyst an idea of how the data were collected (i.e., the sampling design),

areas that may have been inaccessible, and areas of special interest to the decision maker which may have
been heavily sampled. It is often useful to mark the highest and lowest values of the data to see if there are

. any obvious trends. If all of the highest concentrations fall in one region of the plot, the analyst may consider

some method such as post-stratifying the data (stratification after the data are collected and analyzed) to

account for this fact in the analysis. Directions for generating a posting of the data (a posting plot) are
contained in Box 2.3-18.

165

Road

19.1

Figure 2.3-14 Example of a Posting Plot

2.3.9.2 Symbol Plots

For large amounts of data, a posting plot may not be feasible and a symbol plot (Figure 2.3-15) may
be used. A symbol plot is basically the same as a posting plot of the data, except that instead of posting
individual data values, symbols are posted for ranges of the data values. For example, the symbol '0' could
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represent all concentration levels less than 100 ppm, the symbol '1' could represent all concentration levels
between 100 ppm and 200 ppm, etc. Directions for generating a symbol plot are contained in Box 2.3-18.

Road

Figure 2.3-15 Example of a Symbol Plot

Box 2.3-18: Directions for Generating a Posting Plot and a Symbol Plot
with an Example

On a map of the site, plot the location of each sample. At each location, either indicate the value of the data
point (a posting plot) or indicate by an appropriate symbol (a symbol plot) the data range within which the
value of the data point falls for that location, using one unique symbol per data range.

Example: The spatial data displayed in the table below contains both a location (Northing and Easting) and a
concentration level ([c]). The data range from 4.0 to 35.5 so units of 5 were chosen to group the data:

Range Symbol Range Symbol
0.0- 49 0 20.0-249 4
5.0-99 1 25.0-29.9 5
10.0- 149 2 30.0-349 6
15.0-19.9 3 35.0-39.9 7
The data values with corresponding symbols then become:
Northing Easting [c] Symbol i Northing Easting  [c]  Symbd
25.0 0.0 4.0 0 15.0 15.0 16.5 3
250 . 50 11.6 2 15.0 0.0 8.9 1
25.0 10.0 14.9 2 : 10.0 5.0 14.7 2
25.0 15.0 17.4 3 10.0 10.0 10.9 2
20.0 0.0 17.7 3 10.0 15.0 12.4 2
20.0 5.0 12.4 2 5.0 0.0 22.8 4
20.0 10.0 28.6 5 5.0 5.0 19.1 3
20.0 15.0 7.7 1 5.0 10.0 10.2 2
15.0 0.0 15.2 3 5.0 15.0 52 1
15.0 5.0 3155 7 0.0 5.0 49 0
15.0 10.0 14.7 2 0.0 15.0 17.2 3
The posting plot of this data is displayed in Figure 2.3-14 anthe symbol plot is displayed in Figure 2.3-15.
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2.3.9.3 Other Spatial Graphical Representations

The two plots described in sections 2.3.9.1 and 2.3.9.2 provide information on the location of
extreme values and spatial trends. The graphs below provide another item of interest to the data analyst,
continuity of the spatial data. The graphical representations are not described in detail because they are used
more for preliminary geostatistical analysis. These graphical representations can be difficult to develop and
interpret. For more information on these representations, consult a statistician.

An h-scatterplot is a plot of all possible pairs of data whose locations are separated by a fixed
distance in a fixed direction (indexed by h). For example, a h-scatter plot could be based on all the pairs
whose locations are 1 meter apart in a southerly direction. A h-scatter plot is similar in appearance to a
scatter plot (section 2.3.7.2). The shape of the spread of the data in a h-scatter plot indicates the degree of
continuity among data values a certain distance apart in particular direction. If all the plotted values fall close
to a fixed line, then the data values at locations separated by a fixed distance in a fixed location are very
similar. As data values become less and less similar, the spread of the data around the fixed line increases
outward. The data analyst may construct several h-scatter plots with different distances to evaluate the
change in continuity in a fixed direction.

A correlogram is a plot of the correlations of the h-scatter plots. Because the h-scatter plot only
displays the correlation between the pairs of data whose locations are separated by a fixed distance in a fixed
direction, it is useful to have a graphical representation of how these correlations change for different
separation distances in a fixed direction. The correlogram is such a plot which allows the analyst to evaluate
the change in continuity in a fixed direction as a function of the distance between two points. A spatial
correlogram is similar in appearance to a temporal correlogram (section 2.3.8.2). The correlogram spans
opposite directions so that the correlogram with a fixed distance of due north is 1dent1cal to the correlogram
with a fixed distance of due south.

Contour plots are used to reveal overall spatial trends in the data by interpolating data values
between sample locations. Most contour procedures depend on the density of the grid covering the sampling
area (higher density grids usually provide more information than lower densities). A contour plot gives one
of the best overall pictures of the important spatial features. However, contouring often requires that the.
actual fluctuations in the data values are smoothed so that many spatial features of the data may not be
visible. The contour map should be used with other graphical representations of the data and requires expert
judgement to adequately interpret the findings. '
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CHAPTER 3

STEP 3: SELECT THE STATISTICAL TEST

THE DATA

QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

¥

Conduct Preliminary Data Review

)

Select the Statistical Test

Verify the Assumptions

¥

Draw Conclusions From the Data

SELECT THE STATISTICAL TEST
Purpose

Select an appropriate procedure for analyzing

_data based on the preliminary data review.

Activities

- Select Statistical Hypothesis Test

-« Identify Assumptions Underlying Test

Tools

« Hypothesis tests for a single population
« Hypothesis tests for comparing two populations

Step 3: Select the Stagstical Test

e Select the statistical hypothesis test based on the data user's objectives and the results of the
preliminary data review.

n If the problem involves comparing study resuits to

a fixed threshold, such as a regulatory

standard, consider the hypothesis tests in section 3.2.

locations or processes, then consider the hypothesis tests in section 3.3.

Identify the assumptions underlying the statistical test.
[ ]

dispersion, independence, or others as applicable.

u
the test results.

EPA QA/G-9

if the problem involves comparing two populations, such as comparing data from two differen

List the key underlying assumptions of the statistical hypothesis test, such as distributional forfh,

Note any sensitive assumptions where relatively small deviations could jeopardize the validity gif
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STEP 3: SELECT THE STATISTICAL TEST

“ Parameter Test Section | Directions Example

“ Mean One-Sample t-Test 3.2.1.1 Box 3.2-1 Box 3.2-2
Box 3.2-3 Box 3.2-4
Wilcoxon Signed Rank Test | 3212 Box 3.2-5 Box 3.2-6

' Box 3.2-7
Proportion/ Percentile One-Sample Proportion Test 3.2.2.1 Box 3.2-8 Box 3.2-9
Two Means Two-Sample t-Test 3.3.1.1 Box 3.3-1 Box 3.3-2

Satterthwaite's Two-Sample t-Test 3.3.1.2 | Box3.3-3 Box 3.3-4

Two Proportions/Two | Two-Sample Test for Proportions 3.3.2.1 Box 3.3-5 Box 3.3-6
Percentiles _
Non-Parametric Wilcoxon Rank Sum Test 3.3.3.1 Box 3.3-7 Box 3.3-8
Comparison of Two Box 3.3-9
Populations i
Quantile Test 3332
Box No. Page
3.2-1: Directions for a One-Sample t-Test for Simple and Systematic Random Samples
with or without Compositing . ........................... e 32-3
3.2-2: An Example of a One-Sample t-Test for a Simple Random or Composite Sample ........... 3.2-4
3.2-3: Directions for a One-Sample t-Test for a Stratified Random Sample ..................... 32-5
3.2-4: An Example of a One-Sample t-Test for a Stratified Random Sample .................... 32-6
3.2-5: Directions for a Wilcoxon Signed Rank Test for Simple and Systematic Random Samples 3.2-8
3.2-6: An Example of t